Home > Press > UMass Lowell scientist pioneers new class of semiconductors: $1.7M NSF project aims to improve wireless communication, imaging, more
![]() |
Abstract:
A new class of faster, more powerful semiconductors for enhanced wireless communication and digital imaging is on the drawing board, thanks to research led by a UMass Lowell scientist.
Semiconductors transmit electricity. Also known as “chips,” they are found in countless products, including automobiles, computers, household appliances medical devices and smartphones.
UMass Lowell Physics Prof. Viktor Podolskiy is leading a research team that seeks to improve semiconductors used in infrared optoelectronic devices to enhance their performance. The project is a launching pad for new products with enhanced capabilities in intracellular imaging, night vision and quantum and 5G communication that could also better serve the Internet of Things (IoT).
A $1.7 million grant from the National Science Foundation’s Designing Materials to Revolutionize and Engineer Our Future (DMREF) program is funding the four-year project.
“The funding enables us to essentially develop new materials for use and explore how light and matter interact within these materials. In the process of research, the team will train a next-generation workforce of scientists and engineers,” Podolskiy said.
Infrared optoelectronic devices detect and convert light signals, or photons, into electric current, or electrons. The problem is the wavelengths of photons and electrons are naturally mismatched: Infra-red photons are fast and have very long wavelengths, while electron waves are much smaller and slower. In their work, the researchers will “sculpt” photons and electrons to more closely match their wavelengths to each other to improve semiconductor performance in these devices.
Joining Podolskiy on the team are researchers from Purdue University, the University of Texas-Austin and the University of Virginia.
“If we are going to sustain innovation in communications and information processing, we must better understand and learn how to control both electronic and optical properties of these new semiconductor materials,” said team member Avik Ghosh, University of Virginia professor of electrical and computer engineering and physics. “I am really excited to work together with this amazing team.”
The researchers plan to collaborate with the U.S. Air Force to use the materials the team develops for innovative and practical new devices, Podolskiy said.
####
About University of Massachusetts Lowell
UMass Lowell is a national research university located on a high-energy campus in the heart of a global community. The university offers its students bachelor’s, master’s and doctoral degrees in business, education, engineering, fine arts, health, humanities, sciences and social sciences. UMass Lowell delivers high-quality educational programs, vigorous hands-on learning and personal attention from leading faculty and staff, all of which prepare graduates to be leaders in their communities and around the globe.
For more information, please click here
Contacts:
Nancy Cicco
University of Massachusetts Lowell
Office: 978-934-4944
Copyright © University of Massachusetts Lowell
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Wireless/telecommunications/RF/Antennas/Microwaves
Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022
First integrated laser on lithium niobate chip: Research paves the way for high-powered telecommunication systems April 8th, 2022
Ultra-compact integrated photonic device could lead to new optical technologies March 18th, 2022
Imaging
Snapshot measurement of single nanostructure’s circular dichroism March 25th, 2022
Better understanding superconductors with Higgs spectroscopy Prof. Stefan Kaiser from TU Dresden awarded ERC Consolidator Grant March 18th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022
Possible Futures
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Chip Technology
On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Discoveries
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Announcements
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |