Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials

(a)-(c) show how the Seebeck coefficient varies for 1D, 2D and 3D materials, while (d)-(f) show the thermoelectric conductivity for the same systems. No major changes in the shape of the curves are seen for (a)-(c); drastic changes are seen for (d)-(e) beyond a threshold range marked in yellow, making thermoelectric conductivity a much more sensitive, unambiguous measure for dimensionality.

CREDIT
Tokyo Metropolitan University
(a)-(c) show how the Seebeck coefficient varies for 1D, 2D and 3D materials, while (d)-(f) show the thermoelectric conductivity for the same systems. No major changes in the shape of the curves are seen for (a)-(c); drastic changes are seen for (d)-(e) beyond a threshold range marked in yellow, making thermoelectric conductivity a much more sensitive, unambiguous measure for dimensionality. CREDIT Tokyo Metropolitan University

Abstract:
Researchers from Tokyo Metropolitan University have shown that a quantity known as "thermoelectric conductivity" is an effective measure for the dimensionality of newly developed thermoelectric nanomaterials. Studying films of semiconducting single-walled carbon nanotubes and atomically thin sheets of molybdenum sulfide and graphene, they found clear distinctions in how this number varies with conductivity, in agreement with theoretical predictions in 1D and 2D materials. Such a metric promises better design strategies for thermoelectric materials.

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials

Tokyo, Japan | Posted on April 15th, 2021

Thermoelectric devices take differences in temperature between different materials and generate electrical energy. The simplest example is two strips of different metals welded together at both ends to form a loop; heating one of the junctions while keeping the other cool creates an electrical current. This is called the Seebeck effect. Its potential applications promise effective usage of the tremendous amount of power that is wasted as dissipated heat in everyday life, whether it be in power transmission, industrial exhaust, or even body heat. In 1993, it was theorized that atomically thin, one-dimensional materials would have the ideal mix of properties required to create efficient thermoelectric devices. The resulting search led to nanomaterials such as semiconducting single-walled carbon nanotubes (SWCNTs) being applied.

However, there was an ongoing issue that prevented new designs and systems from being accurately characterized. The key properties of thermoelectric devices are thermal conductivity, electrical conductivity, and the Seebeck coefficient, a measure of how much voltage is created at the interface between different materials for a given temperature difference. As material science advanced into the age of nanotechnology, these numbers weren't enough to express a key property of the new nanomaterials that were being created: the "dimensionality" of the material, or how 1D, 2D or 3D-like the material behaves. Without a reliable, unambiguous metric, it becomes difficult to discuss, let alone optimize new materials, particularly how the dimensionality of their structure leads to enhanced thermoelectric performance.

To tackle this dilemma, a team led by Professor Kazuhiro Yanagi of Tokyo Metropolitan University set out to explore a new parameter recently flagged by theoretical studies, the "thermoelectric conductivity." Unlike the Seebeck coefficient, the team's theoretical calculations confirmed that this value varied differently with increased conductivity for 1D, 2D and 3D systems. They also confirmed this experimentally, preparing thin films of single-walled carbon nanotubes as well as atomically thin sheets of molybdenum sulfide and graphene, archetypal materials in 1D and 2D respectively. Measurements conclusively showed that the thermoelectric conductivity of the 1D material decreased at higher values of conductivity, while the curve for 2D materials plateaued. They also note that this demonstrates how the dimensionality of the material is retained even when the material is prepared in macroscopic films, a great boost for efforts to leverage the specific dimensionality of certain structures to improve thermoelectric performance.

Combined with theoretical calculations, the team conclude that high thermoelectric conductivity, high conventional electrical conductivity, and low thermal conductivity are key goals for the engineering of new devices. They hope these measurable, tangible targets will bring much needed clarity and unity to the development of state-of-the-art thermoelectric devices.

###

This work was supported by JSPS KAKENHI Grants-in-Aid for Scientific Research (17H06124, 17H01069, 18H01816, 19J21142, 20H02573, 20K15117, 26102012, 25000003, 19K22127, 19K15383, 20H05189) and the JST CREST Program (MJCR17I5).

####

For more information, please click here

Contacts:
Go Totsukawa

81-426-772-728

@TMU_PR

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

2 Dimensional Materials

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Graphene/ Graphite

Graphene key for novel hardware security May 10th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Materials/Metamaterials

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

In-situ nanoscale insights into the evolution of solid electrolyte interphase shells April 2nd, 2021

Design could enable longer lasting, more powerful lithium batteries: Use of a novel electrolyte could allow advanced metal electrodes and higher voltages, boosting capacity and cycle life March 26th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project