Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally

A quantum dot (the yellow part) is connected to two lead electrodes (the blue parts). Electrons tunneling into the quantum dot from the electrodes interact with each other to form a highly correlated quantum state, called "Fermi liquid." Both nonlinear electric current passing through the quantum dot and its fluctuations that appear as a noise carry important signals, which can unveil underlying physics of the quantum liquid. It is clarified that three-body correlations of the electrons evolve significantly and play essential roles in the quantum state under the external fields that break the particle-hole or time-reversal symmetry.

CREDIT
Rui Sakano
A quantum dot (the yellow part) is connected to two lead electrodes (the blue parts). Electrons tunneling into the quantum dot from the electrodes interact with each other to form a highly correlated quantum state, called "Fermi liquid." Both nonlinear electric current passing through the quantum dot and its fluctuations that appear as a noise carry important signals, which can unveil underlying physics of the quantum liquid. It is clarified that three-body correlations of the electrons evolve significantly and play essential roles in the quantum state under the external fields that break the particle-hole or time-reversal symmetry. CREDIT Rui Sakano

Abstract:
Theoretical physicists Yoshimichi Teratani and Akira Oguri of Osaka City University, and Rui Sakano of the University of Tokyo have developed mathematical formulas that describe a physical phenomenon happening within quantum dots and other nanosized materials. The formulas, published in the journal Physical Review Letters, could be applied to further theoretical research about the physics of quantum dots, ultra-cold atomic gasses, and quarks.

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally

Osaka, Japan | Posted on December 25th, 2020

At issue is 'the Kondo effect'. This effect was first described in 1964 by Japanese theoretical physicist Jun Kondo in some magnetic materials, but now appears to happen in many other systems, including quantum dots and other nanoscale materials.

Normally, electrical resistance drops in metals as the temperature drops. But in metals containing magnetic impurities, this only happens down to a critical temperature, beyond which resistance rises with dropping temperatures.

Scientists were eventually able to show that, at very low temperatures near absolute zero, electron spins become entangled with the magnetic impurities, forming a cloud that screens their magnetism. The cloud's shape changes with further temperature drops, leading to a rise in resistance. This same effect happens when other external 'perturbations', such as a voltage or magnetic field, are applied to the metal.

Teratani, Sakano and Oguri wanted to develop mathematical formulas to describe the evolution of this cloud in quantum dots and other nanoscale materials, which is not an easy task.

To describe such a complex quantum system, they started with a system at absolute zero where a well-established theoretical model, namely Fermi liquid theory, for interacting electrons is applicable. They then added a 'correction' that describes another aspect of the system against external perturbations. Using this technique, they wrote formulas describing electrical current and its fluctuation through quantum dots.

Their formulas indicate electrons interact within these systems in two different ways that contribute to the Kondo effect. First, two electrons collide with each other, forming well-defined quasiparticles that propagate within the Kondo cloud. More significantly, an interaction called a three-body contribution occurs. This is when two electrons combine in the presence of a third electron, causing an energy shift of quasiparticles.

"The formulas' predictions could soon be investigated experimentally", Oguri says. "Studies along the lines of this research have only just begun," he adds.

The formulas could also be extended to understand other quantum phenomena, such as quantum particle movement through quantum dots connected to superconductors. Quantum dots could be a key for realizing quantum information technologies, such as quantum computers and quantum communication.

####

About Osaka City University
We are Osaka City University - the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

For more information, please click here

Contacts:
James Gracey

066-605-3454

@OCU_PR

Copyright © Osaka City University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

Quantum Physics

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Superconductivity

Quantum ‘shock absorbers’ allow perovskite to exhibit superfluorescence at room temperature April 1st, 2022

Physicists find direct evidence of strong electron correlation in a 2D material for the first time: The discovery could help researchers engineer exotic electrical states such as unconventional superconductivity March 18th, 2022

Better understanding superconductors with Higgs spectroscopy Prof. Stefan Kaiser from TU Dresden awarded ERC Consolidator Grant March 18th, 2022

Solving a superconducting mystery with more precise computations: New method from Clemson University researcher, enabled by Frontera supercomputer, helps explain role of phonons in copper-based superconductivity January 28th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Quantum Computing

New error mitigation approach helps quantum computers level up: New error mitigation approach helps quantum computers level up, ASCR: Quantum computers are prone to errors that limit their usefulness in scientific research May 6th, 2022

In balance: Quantum computing needs the right combination of order and disorder: Study shows that disorder in quantum computer chips needs to be designed to perfection / Publication in ‘Nature Communications’ May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Quantum Dots/Rods

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Missing jigsaw piece’: engineers make critical advance in quantum computer design August 20th, 2021

Pushing the boundaries of colloidal quantum dots by making their sizes equal: Scientists demonstrate the relationship between optoelectronic performance and size uniformity in perovskite colloidal quantum dots June 25th, 2021

Quantum nanoscience

UCI scientists turn a hydrogen molecule into a quantum sensor: New technique enables precise measurement of electrostatic properties of materials April 22nd, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

New approach transports trapped ions to create entangling gates January 28th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project