Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material

Joe Carroll, a PhD researcher working with Prof. of Quantum Physics Séamus Davis at the Macroscopic Quantum Matter Group laboratory in University College Cork, lead author on a paper have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2).

CREDIT
Clare Keogh/UCC
Joe Carroll, a PhD researcher working with Prof. of Quantum Physics Séamus Davis at the Macroscopic Quantum Matter Group laboratory in University College Cork, lead author on a paper have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). CREDIT Clare Keogh/UCC

Abstract:
Scientists using one of the world’s most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing.

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material

Cork, Ireland | Posted on June 30th, 2023

Researchers at the Macroscopic Quantum Matter Group laboratory in University College Cork (UCC) have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing’s greatest challenges.

Their finding has been published in the prestigious journal Nature.

Lead author Joe Carroll, a PhD researcher working with UCC Prof. of Quantum Physics Séamus Davis, explains the subject of the paper.

“Superconductors are amazing materials which have many strange and unusual properties. Most famously they allow electricity to flow with zero resistance. That is, if you pass a current through them they don’t start to heat up, in fact, they don’t dissipate any energy despite carrying a huge current. They can do this because instead of individual electrons moving through the metal we have pairs of electrons which bind together. These pairs of electrons together form macroscopic quantum mechanical fluid.”

“What our team found was that some of the electron pairs form a new crystal structure embedded in this background fluid. These types of states were first discovered by our group in 2016 and are now called Electron Pair-Density Waves. These Pair Density Waves are a new form of superconducting matter the properties of which we are still discovering.”

“What is particularly exciting for us and the wider community is that UTe2 appears to be a new type of superconductor. Physicists have been searching for a material like it for nearly 40 years. The pairs of electrons appear to have intrinsic angular momentum. If this is true, then what we have detected is the first Pair-Density Wave composed of these exotic pairs of electrons.”

When asked about the practical implications of this work Mr. Carroll explained;

“There are indications that UTe2 is a special type of superconductor that could have huge consequences for quantum computing.”

“Typical, classical, computers use bits to store and manipulate information. Quantum computers rely on quantum bits or qubits to do the same. The problem facing existing quantum computers is that each qubit must be in a superposition with two different energies - just as Schrödinger’s cat could be called both ‘dead’ and ‘alive’. This quantum state is very easily destroyed by collapsing into the lowest energy state – ‘dead’ - thereby cutting off any useful computation.

“This places huge limits on the application of quantum computers. However, since its discovery five years ago there has been a huge amount of research on UTe2 with evidence pointing to it being a superconductor which may be used as a basis for topological quantum computing. In such materials there is no limit on the lifetime of the qubit during computation opening up many new ways for more stable and useful quantum computers. In fact, Microsoft have already invested billions of dollars into topological quantum computing so this is a well-established theoretical science already.” he said.

“What the community has been searching for is a relevant topological superconductor; UTe2 appears to be that.”

“What we’ve discovered then provides another piece to the puzzle of UTe2. To make applications using materials like this we must understand their fundamental superconducting properties. All of modern science moves step by step. We are delighted to have contributed to the understanding of a material which could bring us closer to much more practical quantum computers.”

Congratulating the research team at the Macroscopic Quantum Matter Group Laboratory in University College Cork, Professor John F. Cryan, Vice President Research and Innovation said:

“This important discovery will have significant consequences for the future of quantum computing. In the coming weeks, the University will launch UCC Futures - Future Quantum and Photonics and research led by Professor Seamus Davis and the Macroscopic Quantum Matter Group, with the use of one of the world's most powerful microscopes, will play a crucial role in this exciting initiative.”

####

For more information, please click here

Contacts:
Eoin Hahessy
University College Cork

Cell: 00353860468950

Copyright © University College Cork

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Imaging

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum Physics

Energy transmission in quantum field theory requires information September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum Computing

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Tools

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project