Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors

Postdoctoral researcher Byoungsoo Kim and professor Hyunjoon Kong led a team that developed an octopus-inspired device for transferring fragile, thin sheets of tissue or flexible electronics.

Photo by L. Brian Stauffer
Postdoctoral researcher Byoungsoo Kim and professor Hyunjoon Kong led a team that developed an octopus-inspired device for transferring fragile, thin sheets of tissue or flexible electronics. Photo by L. Brian Stauffer

Abstract:
Thin tissue grafts and flexible electronics have a host of applications for wound healing, regenerative medicine and biosensing. A new device inspired by an octopus’s sucker rapidly transfers delicate tissue or electronic sheets to the patient, overcoming a key barrier to clinical application, according to researchers at the University of Illinois at Urbana-Champaign and collaborators.

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors

Champaign, IL | Posted on October 16th, 2020

“For the last few decades, cell or tissue sheets have been increasingly used to treat injured or diseased tissues. A crucial aspect of tissue transplantation surgery, such as corneal tissue transplantation surgery, is surgical gripping and safe transplantation of soft tissues. However, handling these living substances remains a grand challenge because they are fragile and easily crumple when picking them up from the culture media,” said study leader Hyunjoon Kong, a professor of chemical and biomolecular engineering at Illinois.

Kong’s group, along with collaborators at Purdue University, the University of Illinois at Chicago, Chung-Ang University in South Korea, and the Korea Advanced Institute for Science and Technology, published their work in the journal Science Advances.

Current methods of transferring the sheets involve growing them on a temperature-sensitive soft polymer that, once transferred, shrinks and releases the thin film. However, this process takes 30-60 minutes to transfer a single sheet, requires skilled technicians and runs the risk of tearing or wrinkling, Kong said.

“During surgery, surgeons must minimize the risk of damage to soft tissues and transplant quickly, without contamination. Also, transfer of ultrathin materials without wrinkle or damage is another crucial aspect,” Kong said.

Seeking a way to quickly pick up and release the thin, delicate sheets of cells or electronics without damaging them, the researchers turned to the animal kingdom for inspiration. Seeing the way an octopus or squid can pick up both wet and dry objects of all shapes with small pressure changes in their muscle-powered suction cups, rather than a sticky chemical adhesive, gave the researchers an idea.

They designed a manipulator made of a temperature-responsive layer of soft hydrogel attached to an electric heater. To pick up a thin sheet, the researchers gently heat the hydrogel to shrink it, then press it to the sheet and turn off the heat. The hydrogel expands slightly, creating suction with the soft tissue or flexible electronic film so it can be lifted and transferred. Then they gently place the thin film on the target and turn the heater back on, shrinking the hydrogel and releasing the sheet.

The entire process takes about 10 seconds. See a video on YouTube.

Next, the researchers hope to integrate sensors into the manipulator, to further take advantage of their soft, bio-inspired design.

“For example, by integrating pressure sensors with the manipulator, it would be possible to monitor the deformation of target objects during contact and, in turn, adjust the suction force to a level at which materials retain their structural integrity and functionality,” Kong said. “By doing so, we can improve the safety and accuracy of handling these materials. In addition, we aim to examine therapeutic efficacy of cells and tissues transferred by the soft manipulator.”

The National Science Foundation, the National Institutes of Health, the Department of Defense Vision Research Program and the Jump Applied Research in Community Health through Engineering and Simulation endowment supported this work.

####

For more information, please click here

Contacts:
LIZ AHLBERG TOUCHSTONE
BIOMEDICAL SCIENCES EDITOR
217-244-1073


Hyunjoon Kong
(217) 333-1178

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Electrothermal soft manipulator enabling safe transport and handling of thin cell/tissue sheets and bioelectronic devices” is available online:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project