Home > Press > Trapping and moving tiny particles using light
Abstract:
Researchers at the Centre for Nano Science and Engineering (CeNSE), IISc, have developed a technique to trap and move nano-sized particles in a fluidic medium using only light.
In a recent study, PhD student Souvik Ghosh along with Prof. Ambarish Ghosh, at CeNSE have demonstrated a novel nanotweezer technology using focused laser beam to trap and manoeuvre a nano-sized silver disk, which in turn can attract and ensnare nanoparticles when light is shined on it.
The study was published in Nature Communications.
Tools that trap and manipulate microscopic objects using light — a Nobel Prize-winning advancement — have led to significant breakthroughs in diverse fields, from atomic physics to biology. These “optical tweezers”, however, are not efficient to trap particles that are nano-sized. This could recently be overcome with the invention of “plasmonic tweezers”, which can trap much smaller particles, such as viruses or quantum dots, at lower light intensities. They use metallic nanostructures such as gold or silver that generate a strong electromagnetic field around themselves when light hits them, which attracts and traps nanoparticles.
Plasmonic tweezers, however, have a limitation: unlike optical tweezers they are typically fixed at a spot and are only able to trap particles close to them. As a result, dynamic control over nanoscale objects in fluids remains challenging. In an earlier study published in Science Robotics, Ghosh and Ghosh managed to transport nanoscale cargoes with plasmonic tweezers integrated to magnetic nano-robots. However, due to this hybrid approach, those tweezers were not applicable for certain type of colloids such as magnetic nanoparticles. Additionally, the spatial resolution of the manipulation experiments was limited to the Brownian fluctuation of the nano-robot itself.
In the present study, the same team have come up with an advanced nanomanipulation technique that works on optical forces alone and therefore versatile in nature. The researchers have shown manipulation with magnetic colloids and even in biological buffer solution solutions. In their experiment, Ghosh et al have used a nanodisk made of silver as a plasmonic tweezer, and manoeuvred it using a focused laser beam that acted as the optical tweezer.
Earlier attempts to trap metallic nanoparticles in an optical tweezer needed high-intensity beams to hold the disk in place inside the colloidal medium. To overcome this challenge, the team fixed the silver nanodisk on top of a glass microrod to reduce its random movement. A low-intensity laser beam was then sufficient to trap and move the disk-rod hybrid inside the colloidal medium, capturing and carrying nanoparticles as small as 40 nm, along the way.
“The approach combines the strengths of two powerful tools called optical and plasmonic tweezers” says Souvik Ghosh. This unique “tweezer in a tweezer” approach could be used to precisely capture, transport and release particles such as nano-diamonds or quantum dots. As it uses low-intensity light, the approach would also enable non-invasive manipulation of fragile biological specimens such as bacteria, viruses and proteins, the researchers say.
“What we have achieved is the capability of manipulating very, very small particles, with much lower light intensity. This is important for things that can be damaged, such as living cells, or even non-living things where high-intensity beams can heat up the material,” says Ambarish Ghosh, an associate professor at CeNSE, IISc.
The demonstrated technology also showed manipulation of a collection of particles within the same colloidal medium. In addition, the researchers were able to simultaneously manipulate individual nanoparticles at different locations of the fluid and release them independently at desired places inside the fluidic chamber, a functionality that was not demonstrated before in the context of optical nanomanipulation.
The simplicity of the approach would allow the plasmonic tweezers to be integrated with advanced optical tweezer systems for large-scale manipulation and assembly of nanomaterials such as fluorescent nanodiamonds, quantum dot, nanocrystals etc. in standard lab-on-chip devices , they suggest.
####
For more information, please click here
Contacts:
Ambarish Ghosh
Associate Professor
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)
Ph: 080-2293 2442
Souvik Ghosh
PhD student
Centre for Nano Science and Engineering (CeNSE)
Indian Institute of Science (IISc)
Copyright © Indian Institute of Science (IISc)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Nanofabrication
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Lab-on-a-chip
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021
Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020
Possible Futures
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Tools
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |