Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication

A, Driving locomotion of a rectangular plate on a frictional surface through excitations of elastic waves by pulsed optical absorption. Table: relationships between motion states of the plate, (instantaneous) effective absorbed light power, friction force and elastic waves. B, Band structure of elastic waveguide modes in a gold plate (width, w = 4 μm; height, h = 60 nm). Insets: modal profiles of fundamental elastic modes at static frequency (arrows specify directions of elastic oscillations). C, Sliding displacement of the contact surface of the gold plate (same as in B; lower panel) in the z-direction driven by a nanosecond optical pulse (upper panel) with frictional sliding resistance Fslide = 2.7 μN. D, Stabilized sliding displacement as a function of sliding resistance, Fslide. E, Sketch of the observed spiral motion experimentally. F, Temporal sequencing of optical images of a hexagonal gold plate spirally moving around a micro-fiber. The fiber has a diameter of 2 μm and the side length and the thickness of the plate are 27.72 μm and 30 nm, respectively. G, Cosine of rotation angle Φrot (upper panels), translation displacement (lower panels) as functions of time for gold plates with hexagonal, circular, and rectangular base shapes. All scale bars represent 15 μm. The used super-continuum laser pulses have 6.8-mW average power, 3-ns temporal width and 6.13–kHz repetition rate.

CREDIT
by Weiwei Tang, Wei Lv, Jinsheng Lu, Fengjiang Liu, Jiyong Wang, Wei Yan, and Min Qiu
A, Driving locomotion of a rectangular plate on a frictional surface through excitations of elastic waves by pulsed optical absorption. Table: relationships between motion states of the plate, (instantaneous) effective absorbed light power, friction force and elastic waves. B, Band structure of elastic waveguide modes in a gold plate (width, w = 4 μm; height, h = 60 nm). Insets: modal profiles of fundamental elastic modes at static frequency (arrows specify directions of elastic oscillations). C, Sliding displacement of the contact surface of the gold plate (same as in B; lower panel) in the z-direction driven by a nanosecond optical pulse (upper panel) with frictional sliding resistance Fslide = 2.7 μN. D, Stabilized sliding displacement as a function of sliding resistance, Fslide. E, Sketch of the observed spiral motion experimentally. F, Temporal sequencing of optical images of a hexagonal gold plate spirally moving around a micro-fiber. The fiber has a diameter of 2 μm and the side length and the thickness of the plate are 27.72 μm and 30 nm, respectively. G, Cosine of rotation angle Φrot (upper panels), translation displacement (lower panels) as functions of time for gold plates with hexagonal, circular, and rectangular base shapes. All scale bars represent 15 μm. The used super-continuum laser pulses have 6.8-mW average power, 3-ns temporal width and 6.13–kHz repetition rate. CREDIT by Weiwei Tang, Wei Lv, Jinsheng Lu, Fengjiang Liu, Jiyong Wang, Wei Yan, and Min Qiu

Abstract:
optical actuators operated in nonliquid environment with stepping resolution of sub-nanometers. The key of the actuation lies in exploiting thermoelastic waves induced by pulsed optical absorption in absorptive micro-objects to overcome friction force, which has been firstly pointed out in an earlier paper from the same group [Sci. Adv. 5, eaau8271 (2019)]. Here, based on their previous efforts, the researchers take this novel scheme to the next level.

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication

Changchun, China | Posted on September 24th, 2021

In this paper, a theory that takes microscopic interactions between friction force and thermally excited elastic waves into account is formulated, which features a predictive equation for the threshold optical power required to overcome friction resistance. The researchers found that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame µN-scale friction force and enable actuation. With new theoretical insights, they experimentally demonstrated two-dimensional spiral motion of gold plates on microfibers as driven by nanosecond laser pulses. In addition, it was discovered that the motion direction is controllable by mechanically adjusting relative positions and contact configurations between plates and microfibers, and the motion speed could be tuned by changing pulse repetition rates and pulse power.



Regarding the potential applications, the authors mentioned that “The proposed actuation scheme can in principle find practical applications in various fields that require to precisely manipulate micro-objects in non-liquid environments. For instance, integrating our technique with an on-chip waveguide coupled network, one can in principle achieve optical modulation by adjusting positions of a gold plate on top of the waveguide to control waveguide transmission via tuning coupling between nearby waveguides. Moreover, it can also be used for transporting dielectric particles attached to the surface of a gold plate along a micro-fiber/nano-wire, which is essential in lab-on-a-chip technologies, e.g., for life-science applications.”

####

For more information, please click here

Contacts:
Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851

Copyright © Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOI

Related News Press

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Lab-on-a-chip

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Trapping and moving tiny particles using light September 24th, 2019

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Chip Technology

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project