Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Skoltech scientists developed a novel method to fine-tune the properties of carbon nanotubes

Abstract:
Scientists from the Skoltech Center for Photonics and Quantum Materials (CPQM) have developed a novel method to fine-tune the optoelectrical properties of single-walled carbon nanotubes (SWCNT) by applying an aerosolized dopant solution on their surface, thus opening up new avenues for SWCNT application in optoelectronics. The results of their study were published in The Journal of Physical Chemistry Letters.

Skoltech scientists developed a novel method to fine-tune the properties of carbon nanotubes

Moscow, Russia | Posted on July 24th, 2019

This year has witnessed the appearance on the market of foldable and bendable screens, bolstering the development of unique materials and paving the way for the next generation of products of virtually any shapes and sizes. Transparent conductive films (TCF) made using an advanced solution, SWCNT, are seen as the key element of flexible and transparent electronics. As opposed to the customary n-type transparent rigid conductors, such as tin-doped indium oxide or aluminum-doped zinc oxide, the flexible and stretchable SWCNT films have p-type (hole-type) conductivity. However poor control over SWCNT's electronic properties is the main hindrance for their broad industrial use. This is particularly true for optoelectronic applications, which often require efficient control over conductivity and Fermi levels, amongst other things.

Carbon nanotubes are commonly treated with a doping agent.

"SWCNT conductivity is enhanced using one of the three most common doping methods: drop-casting, spin-coating or dip-coating, which can significantly decrease the resistance of pristine SWCNT films (up to 15 times) but fail to ensure spatial uniformity and have poor scalability. This leads to non-uniform evaporation of the liquid solvent, resulting in a coffee-ring effect. Moreover, none of these techniques enable precise control over the Fermi level in the SWCNT films," explains Skoltech PhD student, Alexey Tsapenko.

Scientists from the Skoltech lab directed by Professor Albert Nasibulin developed a new approach ensuring uniform, controllable and easily reproducible aerosol doping of SWCNT. The performances obtained with the new method break new ground, prompting the replacement of the currently prevalent rigid transparent metal-oxide conductors by flexible and transparent electronics, and the creation of new applications based on highly conductive transparent films.

"Our method allows easy tuning of SWCNT film parameters thanks to time-controlled deposition of doping aerosol particles," adds Alexey.

The researchers involved in the project note that the new fine-tuning approach developed specifically for carbon nanotubes can be applied for electronic structures of other low-dimensional materials.

####

For more information, please click here

Contacts:
Alina Chernova

7-905-565-3633

Copyright © Skolkovo Institute of Science and Technology (Skoltech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project