Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite

These are the wavelengths of light emitted from the spintronic LED. The inset shows the green light from the device.

CREDIT
University of Utah
These are the wavelengths of light emitted from the spintronic LED. The inset shows the green light from the device. CREDIT University of Utah

Abstract:
When German mineralogist Gustav Rose stood on the slopes of Russia's Ural Mountains in 1839 and picked up a piece of a previously undiscovered mineral, he had never heard of transistors or diodes or had any concept of how conventional electronics would become an integral part of our daily lives. He couldn't have anticipated that the rock he held in his hand, which he named "perovskite," could be a key to revolutionizing electronics as we know them.

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite

Salt Lake City, UT | Posted on January 11th, 2019

In 2017, University of Utah physicist Valy Vardeny called perovskite a "miracle material" for an emerging field of next-generation electronics, called spintronics, and he's standing by that assertion. In a paper published today in Nature Communications, Vardeny, along with Jingying Wang, Dali Sun (now at North Carolina State University) and colleagues present two devices built using perovskite to demonstrate the material's potential in spintronic systems. Its properties, Vardeny says, bring the dream of a spintronic transistor one step closer to reality.

Spintronics

A conventional digital electronic system conveys a binary signal (think 1s and 0s) through pulses of electrons carried through a conductive wire. Spintronics can convey additional information via another characteristic of electrons, their spin direction (think up or down). Spin is related to magnetism. So spintronics uses magnetism to align electrons of a certain spin, or "inject" spin into a system.

If you've ever done the old science experiment of turning a nail into a magnet by repeatedly dragging a magnet along its length, then you've already dabbled in spintronics. The magnet transfers information to the nail. The trick is then transporting and manipulating that information, which requires devices and materials with finely tuned properties. Researchers are working toward the milestone of a spin transistor, a spintronics version of the electronic components found in practically all modern electronics. Such a device requires a semiconductor material in which a magnetic field can easily manipulate the direction of electrons' spin--a property called spin-orbit coupling. It's not easy to build such a transistor, Wang says. "We keep searching for new materials to see if they're more suitable for this purpose."

Here's where perovskites come into play.

Perovskites

Perovskites are a class of mineral with a particular atomic structure. Their value as a technological material has only became apparent in the past 10 years. Because of that atomic structure, researchers have been developing perovskite into a material for making solar panels. By 2018 they'd achieved an efficiency of up to 23 percent of solar energy converted to electrical energy--a big step up from 3.8 percent in 2009.

In the meantime, Vardeny and his colleagues were exploring the possibilities of spintronics and the various materials that could prove effective in transmitting spin. Because of heavy lead atoms in perovskite, physicists predicted that the mineral may possess strong spin-orbit coupling. In a 2017 paper, Vardeny and physics assistant professor Sarah Li showed that a class of perovskites called organic-inorganic hybrid perovskites do indeed possess large spin-orbit coupling. Also, the lifetime of spin injected into the hybrid materials lasted a relatively long time. Both results suggested that this kind of hybrid perovskite held promise as a spintronics material.

Two spintronic devices

The next step, which Vardeny and Wang accomplished in their recent work, was to incorporate hybrid perovskite into spintronic devices. The first device is a spintronic light-emitting diode, or LED. The semiconductor in a traditional LED contains electrons and holes--places in atoms where electrons should be, but aren't. When electrons flow through the diode, they fill the holes and emit light.

Wang says that a spintronic LED works much the same way, but with a magnetic electrode, and with electron holes polarized to accommodate electrons of a certain spin. The LED lit up with circularly polarized electroluminescence, Wang says, showing that the magnetic electrode successfully transferred spin-polarized electrons into the material.

"It's not self-evident that if you put a semiconductor and a ferromagnet together you get a spin injection," Vardeny adds. "You have to prove it. And they proved it."

The second device is a spin valve. Similar devices already exist and are used in devices such as computer hard drives. In a spin valve, an external magnetic field flips the polarity of magnetic materials in the valve between an open, low-resistance state and a closed, high-resistance state.

Wang and Vardeny's spin valve does more. With hybrid perovskite as the device material, the researchers can inject spin into the device and then cause the spin to precess, or wobble, within the device using magnetic manipulation.

That's a big deal, the researchers say. "You can develop spintronics that are not only useful for recording information and data storage, but also calculation," Wang says. "That was an initial goal for the people who started the field of spintronics, and that's what we are still working on."

Taken together, these experiments show that perovskite works as a spintronic semiconductor. The ultimate goal of a spin-based transistor is still several steps away, but this study lays important groundwork for the path ahead.

"What we've done is to prove that what people thought was possible with perovskite actually happens," Vardeny says. "That's a big step."

###

This work was funded by the U.S. Department of Energy Office of Science.

####

For more information, please click here

Contacts:
Paul Gabrielsen

801-505-8253

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full study can be found here:

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Perovskites

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Spintronics

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Let's not make big waves: A team of researchers generates ultra-short spin waves in an astoundingly simple material March 29th, 2019

Chip Technology

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Quantum Computing

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Virginia Tech researchers lead breakthrough in quantum computing July 26th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Materials/Metamaterials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Rice lab produces simple fluorescent surfactants: Compounds show promise for use in medicine, manufacturing August 5th, 2019

Wood You Like Some Fresh Water? New treatment for wood makes a membrane to extract fresh water August 5th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Quantum nanoscience

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project