Home > Press > Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation
![]() |
| This is an artists impression of spin-orbit coupling of atom qubits. CREDIT CQC2T. Illustration: Tony Melov |
Abstract:
Australian scientists have investigated new directions to scale up qubits - utilising the spin-orbit coupling of atom qubits - adding a new suite of tools to the armory.
Spin-orbit coupling, the coupling of the qubits' orbital and spin degree of freedom, allows the manipulation of the qubit via electric, rather than magnetic-fields. Using the electric dipole coupling between qubits means they can be placed further apart, thereby providing flexibility in the chip fabrication process.
In one of these approaches, published in Science Advances, a team of scientists led by UNSW Professor Sven Rogge investigated the spin-orbit coupling of a boron atom in silicon.
"Single boron atoms in silicon are a relatively unexplored quantum system, but our research has shown that spin-orbit coupling provides many advantages for scaling up to a large number of qubits in quantum computing" says Professor Rogge, Program Manager at the Centre for Quantum Computation and Communication Technology (CQC2T).
Following on from earlier results from the UNSW team, published last month in Physical Review X, Rogge's group has now focused on applying fast read-out of the spin state (1 or 0) of just two boron atoms in an extremely compact circuit all hosted in a commercial transistor.
"Boron atoms in silicon couple efficiently to electric fields, enabling rapid qubit manipulation and qubit coupling over large distances. The electrical interaction also allows coupling to other quantum systems, opening up the prospects of hybrid quantum systems," says Rogge.
Another piece of recent research by Professor Michelle Simmons' team at UNSW has also highlighted the role of spin orbit coupling in atom-based qubits in silicon, this time with phosphorus atom qubits. The research was recently published in npj Quantum Information.
The research revealed surprising results. For electrons in silicon--and in particular those bound to phosphorus donor qubits--spin orbit control was commonly regarded as weak, giving rise to seconds long spin lifetimes. However, the latest results revealed a previously unknown coupling of the electron spin to the electric fields typically found in device architectures created by control electrodes.
"By careful alignment of the external magnetic field with the electric fields in an atomically engineered device, we found a means to extend these spin lifetimes to minutes," says Professor Michelle Simmons, Director, CQC2T.
"Given the long spin coherence times and the technological benefits of silicon, this newly discovered coupling of the donor spin with electric fields provides a pathway for electrically-driven spin resonance techniques, promising high qubit selectivity," says Simmons.
Both results highlight the benefits of understanding and controlling spin orbit coupling for large-scale quantum computing architectures.
Commercialising silicon quantum computing IP in Australia
Since May 2017, Australia's first quantum computing company, Silicon Quantum Computing Pty Limited (SQC), has been working to create and commercialise a quantum computer based on a suite of intellectual property developed at the Australian Centre of Excellence for Quantum Computation and Communication Technology (CQC2T). Its goal is to produce a 10-qubit prototype device in silicon by 2022 as the forerunner to a commercial scale silicon-based quantum computer.
As well as developing its own proprietary technology and intellectual property, SQC will continue to work with CQC2T and other participants in the Australian and International Quantum Computing ecosystems, to build and develop a silicon quantum computing industry in Australia and, ultimately, to bring its products and services to global markets.
####
For more information, please click here
Contacts:
Karen Viner-Smith
61-293-850-147
Professor Sven Rogge
Co-Author
61-466-748-373
Available AEDT
@QuantumC2T
Copyright © Centre for Quantum Computation and Communication Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Quantum Computing
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||