Home > Press > RMIT researchers make leap in measuring quantum states
![]() |
The unknown quantum state is shown as a red dot on the Bloch sphere. The algorithm estimates the gradient performing measurements with the green and purple projectors, updates the current estimate of the state (red line), and repeats until the desired accuracy is achieved. CREDIT: RMIT University |
Abstract:
A breakthrough into the full characterisation of quantum states has been published today as a prestigious Editors' Suggestion in the journal Physical Review Letters.
The full characterisation (tomography) of quantum states is a necessity for future quantum computing. However, standard techniques are inadequate for the large quantum bit-strings necessary in full scale quantum computers.
A research team from the Quantum Photonics Laboratory at RMIT University and EQuS at the University of Sydney has demonstrated a new technique for quantum tomography -- self-guided quantum tomography -- which opens future pathways for characterisation of large quantum states and provides robustness against inevitable system noise.
Dr Alberto Peruzzo, Director of the Quantum Photonics Laboratory, said: "This is a big step forward in quantum tomography. Our technique can be applied to all quantum computing architectures in laboratories around the world."
"Characterising quantum states is a serious bottleneck in quantum information science. Self-guided quantum tomography uses a search algorithm to iteratively 'find' the quantum state.
"This technique significantly reduces the necessary resources by removing the need for any data storage or post-processing."
Robert Chapman, lead author and RMIT PhD student, said the technique employed was far more robust against inevitable noise and experimental errors than standard techniques.
"We experimentally characterise quantum states encoded in single photons -- single particles of light.
"Photons are a strong candidate for future quantum computing, however, our method can be applied to other quantum computing architectures, such as ion traps and superconducting qubits.
"Any experiment suffers from measurement noise which degrades results. In our experiment, we engineer the level of noise up to extreme levels to test the performance of our algorithm. We show that self-guided quantum tomography is significantly more robust against noise than standard tomography.
"We hope research groups can employ our technique as a tool for characterising large quantum states and benefit future quantum technologies."
####
For more information, please click here
Contacts:
Dr Alberto Peruzzo
61-410-790-860
Copyright © RMIT University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Follow the Quantum Photonics Lab at:
Related News Press |
Quantum Physics
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Superconductivity
Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023
Quantum Computing
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Discoveries
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Photonics/Optics/Lasers
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
Ultrafast lasers for materials processing August 11th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |