Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time

The center of a magnetic vortex emits spin waves with very short wavelengths in the presence of high-frequency alternating magnetic fields. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf have hereby provided proof of a mechanism which has great potential for future applications in data processing.
CREDIT: HZDR
The center of a magnetic vortex emits spin waves with very short wavelengths in the presence of high-frequency alternating magnetic fields. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf have hereby provided proof of a mechanism which has great potential for future applications in data processing.

CREDIT: HZDR

Abstract:
With the rapid advance of miniaturization, data processing using electric currents faces tough challenges, some of which are insurmountable. Magnetic spin waves are a promising alternative for the transfer of information in even more compact chips. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), as part of an international research venture, have now succeeded in generating spin waves with extremely short wavelengths in the nanometer range - a key feature for their future application.

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time

Dresden, Germany | Posted on July 20th, 2016

Smaller, faster, more energy-efficient - this is the mantra for the further development of computers and mobile telephones which is currently progressing at a breathtaking pace. However, Dr. Sebastian Wintz of the HZDR Institute of Ion Beam Physics and Materials Research knows only too well, how difficult it already is to achieve any further degree of miniaturization. "One major problem with current technologies," he said, "is the heat which is generated when data are transmitted with the aid of electric currents. We need a new concept." The physicist is working with international colleagues on so-called spin waves (magnons) which are set to replace moving charges in the future as information carriers. The scientists have now succeeded for the first time in generating spin waves of such short wavelengths that they have potential for future applications in data processing.

Spin waves replace electric current

The spin denotes a property which lends the particles a magnetic moment. They then act like tiny magnets which run parallel to each other in ferromagnetic materials. If one of the spins then changes direction, this has a knock-on effect on its neighbors. A chain reaction gives rise to a spin wave.

The processing of information is presently based on electric currents. The charged particles speed through a network of wires which are squeezed closer and closer together, driven by the desire for ever more compact chips. On their way, the electrons collide with atoms, causing them to rock to and fro in the crystal lattice thereby generating heat. If the wires are too close together, this heat can no longer be dissipated and the system breaks down. "The great advantage of spin waves is that the electrons themselves don't move," explained Wintz, "therefore precious little heat is produced by the flow of data."

Magnetic vortex as a nano-antenna

The traditional approach adopted to generate spin waves is to use small metal antennas which generate magnons when driven by a high-frequency alternating current. The smallest wavelength which can be generated in this way will be about the size of the antenna which is used. This is precisely where the major problem lies in that small wavelengths on the nanometer scale are required in order to satisfy the demand for ever greater miniaturization. It is not currently possible, however, to make such small high-frequency antennas.

The research team from Germany, Switzerland and the USA has now succeeded in generating extremely short-wavelength spin waves in an entirely new way. As a naturally formed antenna, they use the center of a magnetic vortex which is produced in a small, ultra-thin ferromagnetic disk. Due to the disk's limited size, the spins do not all line up in parallel as normal but lie along concentric circles in the plane of the disk. This, in turn, forces the spins from a small area in the center of the disk, which measures just a few nanometers in diameter, to straighten up and, thus, to point away from the surface of the disk. If this central region is subjected to an alternating magnetic field then a spin wave is produced.

A few more tricks are needed, however, in order to shorten the wavelength as required. Consequently, a second tiny disk is placed onto the first, separated by a thin, non-magnetic layer. When this separating layer is fabricated with a specific thickness, then the two disks interact in such a way as to elicit an antiferromagnetic coupling between the disks - the spins try to point in opposite directions - which reduces the wavelength of the emitted spin waves many times over. "Only in this way do we arrive at a result which is relevant for information technology," added Wintz.

Attractive properties for applications

The scientists not only demonstrated the short wavelengths of the spin waves generated in this way but were also able to reveal other wave properties which could be very useful for future applications. With the help of high-speed movies taken with an X-ray microscope belonging to the Max Planck Institute for Intelligent Systems in Stuttgart (which is installed at the Helmholtz-Zentrum Berlin) they showed that the wavelength can be adjusted precisely by the selection of the excitation frequency. Similar measurements were also carried out at the Paul Scherrer Institute in Switzerland. The results are consistent with a theoretical model which was developed specifically for this study at Oakland University in the USA. What is more, a remarkable phenomenon was predicted, which so far has not been seen directly in the experiments: The speed at which the spin waves travel was calculated to be heavily dependent on their propagation direction (forwards or backwards) - another point which could enable a large number of applications in signal processing.

####

For more information, please click here

Contacts:
Simon Schmitt

49-351-260-3400

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Magnetism/Magnons

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project