Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics

Threads penetrate multiple layers of tissue to sample interstitial fluid and direct it to sensing threads that collect data, such as pH and glucose levels. Conductive threads then deliver the data to a flexible wireless transmitter sitting on top of the skin. The inset figure, upper left, shows liquid flowing in threads sutured into skin.
CREDIT: Nano Lab, Tufts University
Threads penetrate multiple layers of tissue to sample interstitial fluid and direct it to sensing threads that collect data, such as pH and glucose levels. Conductive threads then deliver the data to a flexible wireless transmitter sitting on top of the skin. The inset figure, upper left, shows liquid flowing in threads sutured into skin.

CREDIT: Nano Lab, Tufts University

Abstract:
For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into threads - ranging from simple cotton to sophisticated synthetics - that can be sutured through multiple layers of tissue to gather diagnostic data wirelessly in real time, according to a paper published online July 18 in Microsystems & Nanoengineering. The research suggests that the thread-based diagnostic platform could be an effective substrate for a new generation of implantable diagnostic devices and smart wearable systems.

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics

Medford/Somerville, MA | Posted on July 18th, 2016

The researchers used a variety of conductive threads that were dipped in physical and chemical sensing compounds and connected to wireless electronic circuitry to create a flexible platform that they sutured into tissue in rats as well as in vitro. The threads collected data on tissue health (e.g. pressure, stress, strain and temperature), pH and glucose levels that can be used to determine such things as how a wound is healing, whether infection is emerging, or whether the body's chemistry is out of balance. The results were transmitted wirelessly to a cell phone and computer.

The three-dimensional platform is able to conform to complex structures such as organs, wounds or orthopedic implants.

While more study is needed in a number of areas, including investigation of long-term biocompatibility, researchers said initial results raise the possibility of optimizing patient-specific treatments.

"The ability to suture a thread-based diagnostic device intimately in a tissue or organ environment in three dimensions adds a unique feature that is not available with other flexible diagnostic platforms," said Sameer Sonkusale, Ph.D., corresponding author on the paper and director of the interdisciplinary Nano Lab in the Department of Electrical and Computer Engineering at Tufts University's School of Engineering. "We think thread-based devices could potentially be used as smart sutures for surgical implants, smart bandages to monitor wound healing, or integrated with textile or fabric as personalized health monitors and point-of-care diagnostics."

Until now, the structure of substrates for implantable devices has essentially been two-dimensional, limiting their usefulness to flat tissue such as skin, according to the paper. Additionally, the materials in those substrates are expensive and require specialized processing.

"By contrast, thread is abundant, inexpensive, thin and flexible, and can be easily manipulated into complex shapes," said Pooria Mostafalu, Ph.D., first author on the paper who was a doctoral student at Tufts when he worked on the project and is now a postdoctoral research fellow with the Harvard-MIT Division of Health Sciences and Technology, Brigham and Women's Hospital, and the Wyss Institute for Biologically Inspired Engineering at Harvard University. "Additionally, analytes can be delivered directly to tissue by using thread's natural wicking properties."

###

Other authors on the paper were Kyle A. Alberti and Qiaobing Xu, both of the Tufts University Department of Biomedical Engineering; Mohsen Akbari and Ali Khademhosseini, both of Harvard Medical School's Biomaterials Innovation Research Center, the Harvard-MIT Division of Health Science and Technology and Harvard University's Wyss Institute for Biologically Inspired Engineering. Khademhosseini is also affiliated with King Abdulaziz University's Department of Physics.

The work was supported in part by the National Science Foundation Emerging Frontiers in Research and Innovation (EFRI) through grant number EFRI-1240443.

####

About Tufts University
Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

For more information, please click here

Contacts:
Patrick Collins

617-627-4173

Copyright © Tufts University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE - Pooria Mostafalu, Mohsen Akbari, Kyle A. Alberti, Qiaobing Xu, Ali Khademhosseini, Sameer Sonkusale, "A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics," Microsystems & Nanoengineering, online July 18, 2016, DOI: 10.1038/micronano.2016.39.:

Related News Press

News and information

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Microfluidics/Nanofluidics

Confined magnetic colloidal system for controllable fluid transport March 16th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Bionic idea boosts lithium-ion extraction January 1st, 2021

Jet-printing microfluidic devices on demand November 6th, 2020

Govt.-Legislation/Regulation/Funding/Policy

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Possible Futures

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Nanomedicine

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Arrowhead Presents Preclinical Data on ARO-DUX4 at FSHD Society International Research Congress June 25th, 2021

Sensors

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

A molecule like a nanobattery: Chemical scientists decipher complex electronic structure of a three-nuclear metallorganic compound with the capacity of donating and receiving multiple electrons June 9th, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Research partnerships

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project