Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Common nanoparticle has subtle effects on oxidative stress genes

Image shows HeLa cells incubated for 24 hours with serum-coated TiO2 nanoparticles (proteins are tagged with a red fluorophore). Cell nuclei are stained with DAPI (blue).

Credit: Georgia Tech
Image shows HeLa cells incubated for 24 hours with serum-coated TiO2 nanoparticles (proteins are tagged with a red fluorophore). Cell nuclei are stained with DAPI (blue).

Credit: Georgia Tech

Abstract:
A nanoparticle commonly used in food, cosmetics, sunscreen and other products can have subtle effects on the activity of genes expressing enzymes that address oxidative stress inside two types of cells. While the titanium dioxide (TiO2) nanoparticles are considered non-toxic because they don't kill cells at low concentrations, these cellular effects could add to concerns about long-term exposure to the nanomaterial.

Common nanoparticle has subtle effects on oxidative stress genes

Atlanta, GA | Posted on May 11th, 2016

Researchers at the Georgia Institute of Technology used high-throughput screening techniques to study the effects of titanium dioxide nanoparticles on the expression of 84 genes related to cellular oxidative stress. Their work found that six genes, four of them from a single gene family, were affected by a 24-hour exposure to the nanoparticles.

The effect was seen in two different kinds of cells exposed to the nanoparticles: human HeLa cancer cells commonly used in research, and a line of monkey kidney cells. Polystyrene nanoparticles similar in size and surface electrical charge to the titanium dioxide nanoparticles did not produce a similar effect on gene expression.

"This is important because every standard measure of cell health shows that cells are not affected by these titanium dioxide nanoparticles," said Christine Payne, an associate professor in Georgia Tech's School of Chemistry and Biochemistry. "Our results show that there is a more subtle change in oxidative stress that could be damaging to cells or lead to long-term changes. This suggests that other nanoparticles should be screened for similar low-level effects."

The research was reported online May 6 in the Journal of Physical Chemistry C. The work was supported by the National Institutes of Health (NIH) through the HERCULES Center at Emory University, and by a Vasser Woolley Fellowship.

Titanium dioxide nanoparticles help make powdered donuts white, protect skin from the sun's rays and reflect light in painted surfaces. In concentrations commonly used, they are considered non-toxic, though several other studies have raised concern about potential effects on gene expression that may not directly impact the short-term health of cells.

To determine whether the nanoparticles could affect genes involved in managing oxidative stress in cells, Payne and colleague Melissa Kemp - an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University - designed a study to broadly evaluate the nanoparticle's impact on the two cell lines.

Working with graduate students Sabiha Runa and Dipesh Khanal, they separately incubated HeLa cells and monkey kidney cells with titanium oxide at levels 100 times less than the minimum concentration known to initiate effects on cell health. After incubating the cells for 24 hours with the TiO2, the cells were lysed and their contents analyzed using both PCR and Western Blot techniques to study the expression of 84 genes associated with the cells' ability to address oxidative processes.

Payne and Kemp were surprised to find changes in the expression of six genes, including four from the peroxiredoxin family of enzymes that helps cells degrade hydrogen peroxide, a byproduct of cellular oxidation processes. Too much hydrogen peroxide can create oxidative stress which can damage DNA and other molecules.

The effect measured was significant - changes of about 50 percent in enzyme expression compared to cells that had not been incubated with nanoparticles. The tests were conducted in triplicate and produced similar results each time.

"One thing that was really surprising was that this whole family of proteins was affected, though some were up-regulated and some were down-regulated," Kemp said. "These were all related proteins, so the question is why they would respond differently to the presence of the nanoparticles."

The researchers aren't sure how the nanoparticles bind with the cells, but they suspect it may involve the protein corona that surrounds the particles. The corona is made up of serum proteins that normally serve as food for the cells, but adsorb to the nanoparticles in the culture medium. The corona proteins have a protective effect on the cells, but may also serve as a way for the nanoparticles to bind to cell receptors.

Titanium dioxide is well known for its photo-catalytic effects under ultraviolet light, but the researchers don't think that's in play here because their culturing was done in ambient light - or in the dark. The individual nanoparticles had diameters of about 21 nanometers, but in cell culture formed much larger aggregates.

In future work, Payne and Kemp hope to learn more about the interaction, including where the enzyme-producing proteins are located in the cells. For that, they may use HyPer-Tau, a reporter protein they developed to track the location of hydrogen peroxide within cells.

The research suggests a re-evaluation may be necessary for other nanoparticles that could create subtle effects even though they've been deemed safe.

"Earlier work had suggested that nanoparticles can lead to oxidative stress, but nobody had really looked at this level and at so many different proteins at the same time," Payne said. "Our research looked at such low concentrations that it does raise questions about what else might be affected. We looked specifically at oxidative stress, but there may be other genes that are affected, too."

Those subtle differences may matter when they're added to other factors.

"Oxidative stress is implicated in all kinds of inflammatory and immune responses," Kemp noted. "While the titanium dioxide alone may just be modulating the expression levels of this family of proteins, if that is happening at the same time you have other types of oxidative stress for different reasons, then you may have a cumulative effect."

###

Seed funding for the research came from the HERCULES: Exposome Research Center (NIEHS: P30 ES019776) at the Rollins School of Public Health, Emory University, NIH grant DP2OD006483-01 and a Vasser Woolley Faculty Fellowship. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Sabiha Runa, Dipesh Khanal, Melissa L. Kemp, Christine K. Payne, "TiO2 Nanoparticles Alter the Expression of Peroxiredoxin Anti-Oxidant Genes," (Journal of Physical Chemistry C, 2016):

Related News Press

News and information

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Govt.-Legislation/Regulation/Funding/Policy

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Possible Futures

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Nanomedicine

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases July 4th, 2021

Optical tweezer technology tweaked to overcome dangers of heat June 25th, 2021

Arrowhead Presents Preclinical Data on ARO-DUX4 at FSHD Society International Research Congress June 25th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Materials/Metamaterials

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Announcements

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Food/Agriculture/Supplements

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Graphene nanotubes help to prevent losses at grain elevators June 2nd, 2020

Tiny particle, big payoff: Innovative virus research may save wheat and other crops May 15th, 2020

Personal Care/Cosmetics

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018

Programmable materials find strength in molecular repetition May 23rd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Safety-Nanoparticles/Risk management

No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

NIOSH requests data to help develop exposure limits for nanomaterials February 1st, 2020

Research partnerships

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project