Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene teams up with two-dimensional crystals for faster data communications

Graphene/WSe2 (2-D material)/graphene heterostructure.
CREDIT: ICFO-Fabien Vialla
Graphene/WSe2 (2-D material)/graphene heterostructure.

CREDIT: ICFO-Fabien Vialla

Abstract:
Ultra-fast detection of light lies at the heart of optical communication systems nowadays. Driven by the internet of things and 5G, data communication bandwidth is growing exponentially, thus requiring even faster optical detectors that can be integrated into photonic circuits.

Graphene teams up with two-dimensional crystals for faster data communications

Barcelona, Spain | Posted on October 5th, 2015

In the recent work published today in Nature Nanotechnology, the research group led by Prof at ICFO Frank Koppens has shown that a two-dimensional crystal, combined with graphene, has the capability to detect optical pulses with a response faster than ten picoseconds, while maintaining a high efficiency. By using ultra-fast laser pulses, the researchers have shown a record-high photo-response speed for a heterostructure made of two-dimensional materials. These new materials are gaining more and more attention due to their amazing and rich variety of properties.

An important advantage of these devices based on graphene and other two-dimensional materials is that they can be integrated monolithically with silicon photonics enabling a new class of photonic integrated circuits. Although this study has been focused on the intrinsic properties of the photo-detection device, the next step is to develop prototype photonic circuitry and explore ways to improve large-scale production of these devices.

While Prof. Frank Koppens comments "It is remarkable how a material which is just a few nanometers thick can have such high performance", ICFO researcher Mathieu Massicotte and first author of this study states that "Everyone knew graphene could make ultrafast photodetectors, but related two-dimensional crystals were still lagging very much behind. In our work we show that by teaming up these two materials, we can obtain a photodetector that is not only ultrafast but also highly efficient."

The results obtained from this study have shown that the stacking of semiconducting 2D materials with graphene in heterostructures could lead to new, fast and efficient optoelectronic applications, such as high-speed integrated communication systems.

###

This study has been possible thanks to the support of the Fundació Cellex Barcelona, the European Research Council (ERC) and the EC under the Graphene Flagship, among others.

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences is a center of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program financed by the Fundació Privada Cellex Barcelona. ICFO is a member of the Severo Ochoa Excelence program and a member of The Barcelona Institute of Science and Technology.

For more information, please click here

Contacts:
Alina Hirschmann

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Link to the research group led by Prof. at ICFO Frank Koppens:

Link to Graphene @ ICFO:

or:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project