Home > Press > Synthetic biology needs robust safety mechanisms before real world application: Ethics and technology hold the key to the success of synthetic biology
Abstract:
Targeted cancer treatments, toxicity sensors and living factories: synthetic biology has the potential to revolutionize science and medicine. But before the technology is ready for real-world applications, more attention needs to be paid to its safety and stability, say experts in a review article published in Current Opinion in Chemical Biology.
Synthetic biology involves engineering microbes like bacteria to program them to behave in certain ways. For example, bacteria can be engineered to glow when they detect certain molecules, and can be turned into tiny factories to produce chemicals.
Synthetic biology has now reached a stage where it's ready to move out of the lab and into the real world, to be used in patients and in the field. According to Professor Pamela Silver, one of the authors of the article from Harvard Medical School in the US, this move means researchers should increase focus on the safety of engineered microbes in biological systems like the human body.
"Historically, molecular biologists engineered microbes as industrial organisms to produce different molecules," said Professor Silver. "The more we discovered about microbes, the easier it was to program them. We've now reached a very exciting phase in synthetic biology where we're ready to apply what we've developed in the real world, and this is where safety is vital."
Microbes have an impact on health; the way they interact with animals is being ever more revealed by microbiome research - studies on all the microbes that live in the body - and this is making them easier and faster to engineer. Scientists are now able to synthesize whole genomes, making it technically possible to build a microbe from scratch.
"Ultimately, this is the future - this will be the way we program microbes and other cell types," said Dr. Silver. "Microbes have small genomes, so they're not too complex to build from scratch. That gives us huge opportunities to design them to do specific jobs, and we can also program in safety mechanisms."
One of the big safety issues associated with engineering microbial genomes is the transfer of their genes to wild microbes. Microbes are able to transfer segments of their DNA during reproduction, which leads to genetic evolution. One key challenge associated with synthetic biology is preventing this transfer between the engineered genome and wild microbial genomes.
There are already several levels of safety infrastructure in place to ensure no unethical research is done, and the kinds of organisms that are allowed in laboratories. The focus now, according to Dr. Silver, is on technology to ensure safety. When scientists build synthetic microbes, they can program in mechanisms called kill switches that cause the microbes to self-destruct if their environment changes in certain ways.
Microbial sensors and drug delivery systems can be shown to work in the lab, but researchers are not yet sure how they will function in a human body or a large-scale bioreactor. Engineered organisms have huge potential, but they will only be useful if proven to be reliable, predictable, and cost effective. Today, engineered bacteria are already in clinical trials for cancer, and this is just the beginning, says Dr. Silver.
"The rate at which this field is moving forward is incredible. I don't know what happened - maybe it's the media coverage, maybe the charisma - but we're on the verge of something very exciting. Once we've figured out how to make genomes more quickly and easily, synthetic biology will change the way we work as researchers, and even the way we treat diseases."
###
Read the story on Elsevier Connect
Article details
"Synthetic biology expands chemical control of microorganisms" by Tyler J Ford and Pamela A Silver (doi: 10.1016/j.cbpa.2015.05.012). The article appears in Current Opinion in Chemical Biology, Volume 28 (October 2015), published by Elsevier.
####
About Elsevier
Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions -- among them ScienceDirect, Scopus, Elsevier Research Intelligence and ClinicalKey -- and publishes over 2,500 journals, including The Lancet and Cell, and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc, a world-leading provider of information solutions for professional customers across industries.
About Current Opinion in Chemical Biology
Current Opinion in Chemical Biology provides systematic information on the views of experts on current advances in chemical biology in a clear and readable form, and evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. The subject of chemical biology is divided into themed sections which are reviewed regularly to keep them relevant. For 2015 they include Next Generation Therapeutics, Synthetic Biology and Omics. www.journals.elsevier.com/current-opinion-in-chemical-biology
For more information, please click here
Contacts:
Aileen Christensen
31-204-852-053
Copyright © Elsevier
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Cancer
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Ethics
Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022
Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016
March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015
PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014
Possible Futures
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Quantum pumping in molecular junctions August 16th, 2024
Sensors
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||