Home > Press > New optical chip lights up the race for quantum computer
![]() |
This is the silicon based quantum optics lab-on-a-chip. CREDIT: University of Bristol |
Abstract:
The microprocessor inside a computer is a single multipurpose chip that has revolutionised people's life, allowing them to use one machine to surf the web, check emails and keep track of finances.
Now, researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have pulled off the same feat for light in the quantum world by developing an optical chip that can process photons in an infinite number of ways.
It's a major step forward in creating a quantum computer to solve problems such as designing new drugs, superfast database searches, and performing otherwise intractable mathematics that aren't possible for super computers.
The fully reprogrammable chip brings together a multitude of existing quantum experiments and can realise a plethora of future protocols that have not even been conceived yet, marking a new era of research for quantum scientists and engineers at the cutting edge of quantum technologies. The work is published in the journal Science on 14 August.
Since before Newton held a prism to a ray of sunlight and saw a spectrum of colour, scientists have understood nature through the behaviour of light. In the modern age of research, scientists are striving to understand nature at the quantum level and to engineer and control quantum states of light and matter.
A major barrier in testing new theories for quantum science and quantum computing is the time and resources needed to build new experiments, which are typically extremely demanding due to the notoriously fragile nature of quantum systems.
This result shows a step change for experiments with photons, and what the future looks like for quantum technologies.
Dr Anthony Laing, who led the project, said: "A whole field of research has essentially been put onto a single optical chip that is easily controlled. The implications of the work go beyond the huge resource savings. Now anybody can run their own experiments with photons, much like they operate any other piece of software on a computer. They no longer need to convince a physicist to devote many months of their life to painstakingly build and conduct a new experiment."
The team demonstrated the chip's unique capabilities by re-programming it to rapidly perform a number of different experiments, each of which would previously have taken many months to build.
Bristol PhD student Jacques Carolan, one of the researchers, added: "Once we wrote the code for each circuit, it took seconds to re-programme the chip, and milliseconds for the chip to switch to the new experiment. We carried out a year's worth of experiments in a matter of hours. What we're really excited about is using these chips to discover new science that we haven't even thought of yet."
The device was made possible because the world's leading quantum photonics group teamed up with Nippon Telegraph and Telephone (NTT), the world's leading telecommunications company.
Professor Jeremy O'Brien, Director of the Centre for Quantum Photonics at Bristol University, explained: "Over the last decade, we have established an ecosystem for photonic quantum technologies, allowing the best minds in quantum information science to hook up with established research and engineering expertise in the telecommunications industry. It's a model that we need to encourage if we are to realise our vision for a quantum computer."
The University of Bristol's pioneering 'Quantum in the Cloud' is the first and only service to make a quantum processor publicly accessible and plans to add more chips like this one to the service so others can discover the quantum world for themselves.
####
For more information, please click here
Contacts:
Philippa Walker
44-117-928-7777
Copyright © University of Bristol
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
New compound unleashes the immune system on metastases September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Lab-on-a-chip
Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021
Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020
Chip Technology
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
The present and future of computing get a boost from new research July 21st, 2023
Quantum Computing
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Optical computing/Photonic computing
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
USTC enhances fluorescence brightness of single silicon carbide spin color centers June 9th, 2023
Announcements
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Training quantum computers: physicists win prestigious IBM Award September 8th, 2023
Machine learning contributes to better quantum error correction September 8th, 2023
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
New compound unleashes the immune system on metastases September 8th, 2023
Photonics/Optics/Lasers
University of Chicago scientists invent smallest known way to guide light: 2D optical waveguides could point way to new technology August 11th, 2023
Ultrafast lasers for materials processing August 11th, 2023
Research partnerships
Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023
Polymer p-doping improves perovskite solar cell stability January 20th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |