Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Transparent artificial nacre: A brick wall at the nanoscale

Structure of the nacre-mimetic material as visualized by electron microscopySource: P. Das / DWI
Structure of the nacre-mimetic material as visualized by electron microscopy

Source: P. Das / DWI

Abstract:
Natural materials have extraordinary mechanical properties, which are based on sophisticated arrangements and combinations of multiple building blocks. One key aspect of today's materials research therefore is to develop bio-inspired materials reaching to the properties of natural materials - or even exceeding those in certain functionalities. The Walther group at DWI now prepared a nacre-inspired nanocomposite that combines exceptional mechanical properties with glass-like transparency and a high gas- and fire-barrier (Nature Communications, 2015).

Transparent artificial nacre: A brick wall at the nanoscale

Aachen, Germany | Posted on January 22nd, 2015

The structure of nacre resembles a brick wall at the microscopic scale: Calcium carbonate platelets (‘bricks') alternate with soft biopolymer layers (‘mortar'). While the solid platelets serve as the load bearing and reinforcing part, energy can be dissipated into the soft polymer segments. Together, this results in a lightweight material that is considered as the gold standard of natural materials since it is both remarkably stiff and tough, a combination of features that is hard to realize in synthetic materials. Previous approaches to synthesize nacre-mimetics were not feasible on the large scale due to energy-intensive and laborious multistep procedures. Also, it was not possible to synthesize transparent nacre-mimetic films and foils.

Andreas Walther and his team decided to use synthetic nanoclays for their nacre-mimetic materials. This significantly improved the material's transparency. The Aachen-based research group also refined the underlying preparation procedure: "Mussels grow nacre in a lengthy process. For our nanocomposites, we instead apply a rapid self-assembly process," the chemist explains. First, the researchers coat the clays with a layer of polyvinylalcohol (‘mortar on the brick') and subsequently, these core/shell particles self-assemble into a thin film upon water removal. The whole procedure takes less then 24 hours.

To learn more about how the dimensions of the nanoclays influence the characteristics of the resulting nano-composite, Walther and colleagues compared nanoplatelets of different size. "The nacre-mimetics based on small clays are very tough. However, if we use large clays with an aspect ratio of 3500, the resulting nacre-mimetics are both extremely stiff and strong. Their mechanical properties actually reach close to those of fiber composites, which are far more laborious to prepare," says PhD student Paramita Das. The glass-like transparency and the high gas barrier of the nanocomposite are an extra benefit of the material.

This outstanding combination of features makes the nacre-mimetic material a promising candidate for future applications, not only as a structural material, but also for gas storage applications and food packaging. In addition, it may be used as an advanced substrate and for encapsulation of oxygen-sensitive organic electronics in flexible displays.

Full bibliographic information
P. Das, J.-M. Malho, K. Rahimi, F. H. Schacher, B. Wang, D. E. Demco, A. Walther; Nacre-Mimetics with Synthetic Nanoclays up to Ultrahigh Aspect Ratios; Nature Communications 6 (2015), doi: NCOMMS6967

####

For more information, please click here

Contacts:
Janine Hillmer

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project