Home > Press > New Method Introduced for Synthesis of Hydroxyapatite Nanoparticles
Abstract:
Iranian researchers used a new method to produce hydroxyapatite powder with smaller size and lower cost.
In this research, a material has been used as the growth cores, which enables the control of crystalline structure in hydroxyapatite during the production. The product has direct applications in the production of medical and dentistry implants, including bone powder, bolt coating and orthopedics plates.
Among the advantages of this plan, mention can be made of increasing the rate of the production of hydroxyapatite particles, decreasing size of final particles, modifying physical and mechanical properties of the particles as biocompatible material and reducing the production cost.
Numerous researchers are currently being carried out on the synthesis of hydroxyapatite inorganic powder at nanometric scale, the ratio of appropriate raw materials, and high degree of crystallization. The reason is that nanoparticles have much better properties than the similar micro-particles. The aim of the research is to present a method for the production of hydroxyapatite nanoparticles by using nanoliposomes as a new and applicable method in the production of nanoparticles.
Based on the results, particles size and their distribution can be controlled through this method. Moreover, this method prevents the accumulation of particles. The synthesized nanoparticles are 50-60 nm in diameter and they have narrow size distribution.
The shape and size of crystals in the structure of hydroxyapatite affects many properties of this compound, including mechanical properties, such as fracture strength and fracture toughness, surface characteristics, biocompatibility and solubility. Therefore, controlling the crystallization structure of hydroxyapatite results in the extension of its applications in various industries.
Results of the research have been published in Ceramics International, vol. 40, issue 7, Part A, August 2014, pp. 9377-9381.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Industrial
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||