Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quicker method paves the way for atomic-level design

Abstract:
A new X-ray method will enable the development of more efficient catalysts. The method opens up new opportunities to work on atomic level in a number of areas of materials science. Researchers from Lund University are among those behind the new method.

Quicker method paves the way for atomic-level design

Lund, Sweden | Posted on February 1st, 2014

The new X-ray method is used to determine the atomic structure of the surface of different materials.
The goal of the present research is to understand how catalysts work at atomic level - both the catalytic converters used for vehicle emissions control in cars and catalysts used in industry.

"Today, almost all developments in catalysts take place through a method of trial and error, but in order to be able to develop better catalysts in the future, deeper understanding of the atomic level is needed", says Dr Johan Gustafson, a researcher at the Department of Physics at Lund University.

A catalyst works by capturing the molecules that are to react on a catalytic surface. The effect of the surface on the molecules is to speed up the desired reaction. The surfaces of different materials capture and affect molecules in different ways. The new X-ray method offers researchers a significantly improved insight into what happens on these surfaces and in their active sites, i.e. the places where the molecules attach and react.

With this knowledge, the material in the catalyst can be optimised to speed up desired reactions and slow down others. The new X-ray method not only provides an instant picture of the situation on a surface, but can also be used to monitor changes over the time that the surface is subjected to different treatments.

"This could be a catalytic reaction that happens on the surface, as in our case. But it would also be possible to monitor how nanostructures grow or how metals oxidise, in conjunction with corrosion, as protection against corrosion or to change the properties of the surface in another way", says Johan Gustafson.

The researchers have developed the new X-ray method by using X-rays of around five times higher energy than usual. This means that a larger amount of data can be measured simultaneously, which in turn drastically reduces the time taken to conduct a full surface structure determination, from ten hours with the traditional method to roughly ten minutes with the new method.

The journal Science now reports on the new X-ray method, which Johan Gustafson has developed with colleagues from Lund University, Chalmers University of Technology in Gothenburg, the DESY research centre in Germany and Hamburg University.

####

About Lund University
Our university has all the advantages of a wide academic range and highly-qualified staff. We offer a rich and diverse academic environment with creative links between students and teachers, international cutting-edge researchers and between university and community.

Lund University is Scandinavia's largest institution for education and research. We are active in Lund, Malmoe and Helsingborg, and have a comprehensive global network of contacts and growing co-operation within the oeresund University.

For more information, please click here

Contacts:
Lotte Billing


Dr Johan Gustafson
Associate Senior Lecturer in Synchrotron Radiation Physics
Department of Physics, Lund University
Tel. +46 46 222 38 70

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project