Home > Press > Production of Catalyst for Steam Reforming of Methane
Abstract:
Iranian researchers from Kashan University produced a catalyst based on magnesium oxide nano-crystals that in addition to having high activity and stability has very high resistance against carbon formation.
Results of the research have application in various industries, including steel industry, production of syngas for reduction of iron oxide and production of sponge iron, petrochemical industries, and production of syngas as raw feed for the production of methanol, ammonia, acetic acid, and so forth.
In the first stage of the research, magnesium oxide with mesoporous structure, high specific area, and nanocrystalline properties was synthesized as the catalyst bed through deposition method. Next, the active part of nickel was inoculated with various weight percents on the catalyst bed. The synthesized catalysts were next subjected to characterization and reactor tests. Based on the obtained results, the catalyst with the optimum load was selected and the effect of reaction parameters on its performance was investigated. Finally, the results obtained from this experiment were compared with those obtained from common industrial catalysts.
The use of this catalyst bed with the abovementioned properties resulted in high dispersion of the active part of nickel on the surface of the catalyst bed, which consequently increased the activity and stability of the catalyst in comparison with the commercial catalyst.
Among the plans that will be investigated by the researchers in the near future, mention can be made of the addition of various percentages of alkali and alkaline-earth metals as promoter on this catalyst and studying their effect on steam reforming of methane and also on dry reforming of methane.
Results of the research have been published in Chinese Journal of Catalysis, vol. 34, issue 7, July 2013, pp. 1443-1448.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Industrial
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||