Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bubbles are the new lenses for nanoscale light beams

A nanoscale light beam modulated by short electromagnetic waves, known as surface plasmon polaritons -- labelled as SPP beam -- enters the bubble lens, officially known as a reconfigurable plasmofluidic lens. The bubble controls the light waves, while the grating provides further focus.

Credit: Tony Jun Huang, Penn State
A nanoscale light beam modulated by short electromagnetic waves, known as surface plasmon polaritons -- labelled as SPP beam -- enters the bubble lens, officially known as a reconfigurable plasmofluidic lens. The bubble controls the light waves, while the grating provides further focus.

Credit: Tony Jun Huang, Penn State

Abstract:
Bending light beams to your whim sounds like a job for a wizard or an a complex array of bulky mirrors, lenses and prisms, but a few tiny liquid bubbles may be all that is necessary to open the doors for next-generation, high-speed circuits and displays, according to Penn State researchers.

Bubbles are the new lenses for nanoscale light beams

University Park, PA | Posted on August 9th, 2013

To combine the speed of optical communication with the portability of electronic circuitry, researchers use nanoplasmonics -- devices that use short electromagnetic waves to modulate light on the nanometer scale, where conventional optics do not work. However, aiming and focusing this modulated light beam at desired targets is difficult.

"There are different solid-state devices to control (light beams), to switch them or modulate them, but the tenability and reconfigurability are very limited," said Tony Jun Huang, associate professor of engineering science and mechanics. "Using a bubble has a lot of advantages."

The main advantage of a bubble lens is just how quickly and easily researchers can reconfigure the bubble's location, size, and shape -- all of which affect the direction and focus of any light beam passing through it.

Huang's team created separate simulations of the light beams and bubble lens to predict their behaviors and optimize conditions before combining the two in the laboratory. They published their findings in Nature Communications.

To form the bubble lens, researchers used a low-intensity laser to heat water on a gold surface. The tiny bubble's optical behavior remains consistent as long as the laser's power and the environmental temperature stay constant.

Simply moving the laser or adjusting the laser's power can change how the bubble will deflect a light beam, either as a concentrated beam at a specific target or as a dispersed wave. Changing the liquid also affects how a light beam will refract.

The materials to form bubble lenses are inexpensive, and the bubbles themselves are easy to dissolve, replace and move.

"In addition to its unprecedented reconfigurability and tenability, our bubble lens has at least one more advantage over its solid-state counterparts: its natural smoothness," said Huang. "The smoother the lens is, the better quality of the light that pass through it."

Huang believes that the next step is to find out how the bubble's shape influences the direction of the light beam and the location of its focal point. Fine control over these light beams will enable improvements for on-chip biomedical devices and super resolution imaging.

"For all these applications, you really need to precisely control light in nanoscale, and that's where this work can be a very important component," said Huang.

Chenglong Zhao, postdoctoral fellow in engineering science and mechanics, Penn State, designed and conducted the experiment; Yongmin Liu, assistant professor of mechanical and industrial engineering, and electrical and computer engineering, Northeastern University, worked with Nicholas Fang, associate professor of mechanical engineering, MIT, to analyze the results and develop simulations; and Yanhui Zhao, graduate student in engineering science and mechanics, Penn State, fabricated the materials.

The National Institutes of Health, the National Science Foundation, and the Penn State Center for Nanoscale Science funded this study.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Chip Technology

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023

Discoveries

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Announcements

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

A new kind of magnetism November 17th, 2023

Photonics/Optics/Lasers

Night-time radiative warming using the atmosphere November 17th, 2023

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project