Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Single-Crystal, Organic Nanowire High-Performance Phototransistors

Abstract:
The development of organic phototransistors (OPTs) based on single-crystalline n-channel nanowires (NWs) that are in turn based on organic semiconductors is highly desirable for bottom-up fabrication of complementary photoelectronic circuits, providing high operational stability, easy control of photoswitching voltages, a high photosensitivity, and good responsivity. To date, however, the literature has focused on thin-film OPTs, and single-crystalline NW OPTs have received much less attention.

Single-Crystal, Organic Nanowire High-Performance Phototransistors

Germany | Posted on October 18th, 2012

Prof. Joon Hak Oh and Hojeong Yu, working at UNIST in Ulsan, South Korea, together with Zhenan Bao at Stanford University, USA, have worked on organic single-crystalline NW OPTs fabricated using N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide, which is an example of a high-performance n-channel organic semiconductor, as the photoactive layer.

The researchers observed a highly sensitive and reproducible photoresponse from their NW OPTs and made quantitative investigations into the photogenerated charge-carrier behavior. There was a significant enhancement in the charge-carrier mobility upon light irradiation, as compared with the charge-carrier mobility in the dark, and the mobility was enhanced at a higher incident power density, as well as being dependent on the wavelength of the incident light. The external quantum efficiency of the NW OPT devices was much higher than that of thin-film OPTs, attributed to the defect-free single-crystalline nature of the nanowires.

The findings highlight organic single-crystalline NW-OPTs as an alternative to conventional thin-film-type photodiodes, and could help towards optoelectronic device miniaturization.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

Thin films

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Photonics/Optics/Lasers

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project