Home > Press > Nanoparticles detect biochemistry of inflammation
This is Adah Almutairi, Ph.D.
Credit: UC San Diego School of Medicine |
Abstract:
Inflammation is the hallmark of many human diseases, from infection to neurodegeneration. The chemical balance within a tissue is disturbed, resulting in the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide, which can cause oxidative stress and associated toxic effects.
Although some ROS are important in cell signaling and the body's defense mechanisms, these chemicals also contribute to and are indicators of many diseases, including cardiovascular dysfunction. A non-invasive way of detecting measurable, low levels of hydrogen peroxide and other ROS would provide a viable way to detect inflammation. Such a method would also provide a way to selectively deliver drugs to their targets.
Adah Almutairi, PhD, associate professor at the Skaggs School of Pharmacy and Pharmaceutical Sciences, the Department of NanoEngineering, and the Materials Science and Engineering Program at the University of California, San Diego, and colleagues have developed the first degradable polymer that is extremely sensitive to low but biologically relevant concentrations of hydrogen peroxide.
Their work is currently published in the online issue of the Journal of the American Chemical Society.
These polymeric capsules, or nanoparticles, are taken up by macrophages and neutrophils - immune system cells that rush to the site of inflammation. The nanoparticles then release their contents when they degrade in the presence of hydrogen peroxide produced by these cells.
"This is the first example of a biocompatible way to respond to oxidative stress and inflammation," said Almutairi, director of the UC San Diego Laboratory of Bioresponsive Materials. "Because the capsules are tailored to biodegrade and release their cargo when encountering hydrogen peroxide, they may allow for targeted drug delivery to diseased tissue."
Almutairi is looking to test this method in a model of atherosclerosis. "Cardiologists have long needed a non-invasive method to determine which patients are vulnerable to a heart attack caused by ruptured plaque in the arteries before the attack," she said. "Since the most dangerous of plaques is inflamed, our system could provide a safe way to detect and treat this disease."
Additional contributors to the study include Caroline de Gracia Lux, Shivanjali Joshi-Barr, Trung Nguyen, Enas Mahmoud, Eric Schopf and Nadezda Fomina.
This research was supported by the NIH Director's New Innovator Award 1DP2OD006499-01 and a King Abdulaziz City for Science and Technology center grant to the Center of Excellence in Nanomedicine at UC San Diego.
####
For more information, please click here
Contacts:
Debra Kain
619-543-6163
Copyright © University of California - San Diego
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
New method in the fight against forever chemicals September 13th, 2024
News and information
New method in the fight against forever chemicals September 13th, 2024
Energy transmission in quantum field theory requires information September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Sensors
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Energy transmission in quantum field theory requires information September 13th, 2024
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Announcements
New discovery aims to improve the design of microelectronic devices September 13th, 2024
New method in the fight against forever chemicals September 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||