Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UT Arlington micropunching lithography project could yield pliable cell phone, laptops

Abstract:
UT Arlington professor Cheng Luo can envision the day that a flexible cell phone could be folded and placed in a pocket like a billfold or that a laptop computer could be rolled up and stored.

UT Arlington micropunching lithography project could yield pliable cell phone, laptops

Arlington, TX | Posted on July 25th, 2012

Through an active $300,000 National Science Foundation grant, the mechanical and aerospace engineeringprofessor is developing a process called "micropunching lithography." The process is used to create lightweight, low-cost and more flexible polymer-based devices that have the potential to replace silicon-based materials commonlyused in computers and other electronic devices.

Luo's work was recently published in the June 2012 North America edition of International Innovation. His project has garnered three grants totaling about $700,000.

"Practical applications for these microstructures could be in everything from glucose monitoring and delivery of chemicals in treating water pipes," Luo said.

Micropunching lithography involves two operations: cutting and drawing. Luo said in these two operations polymers are deformed using rigid and soft molds, respectively, creating desired polymer channels and sidewalls that can be used for detection and delivery.

Erian Armanios, chairman of the Mechanical and Aerospace Engineering Department, said Luo's process has diverse applications.

"These novel microstructures of conducting polymers could be used as sensors and actuators for engineering and biomedical applications," Armanios said.

Luo joined UT Arlington in 2007 and has focused his research on mechanics, microfabrication and nanofabrication, particularly with biomedical applications.

####

About University of Texas at Arlington
His research is representative of the work under way at The University of Texas at Arlington, a comprehensive research institution of nearly 33,500 students in the heart of North Texas.

For more information, please click here

Contacts:
Herb Booth

817-272-7075

KRISTIN SULLIVAN • Assistant Vice President for Media Relations
The University of Texas at Arlington
Box 19137 • 701 S. Nedderman Drive
Arlington, TX 76019-0137

Ph. 817-272-5364
FAX 817-272-2755
Cell 817-706-9811

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project