Home > Press > Iranian Scientists Synthesize Core-Shell Nanocrystals through Surfactant-Free Technique
Abstract:
Iranian researchers at Ferdowsi University of Mashhad devised a new scheme for preparation of core-shell nanocrystals, by combining the microemulsion and ultrasonication methods, which features moderate synthesis conditions and does not require any surfactants.
The properties of core-shell composites depend heavily on the materials constituting both the core and the shell parts. These compounds offer superiorities in terms of dimension, optical properties, electronic characteristics, etc. so that they have found various applications in photovoltaic cells, optical sensors and catalysis technology, just to mention a few areas.
As reported in a previous work available in the literature, a thin shell of a wide-band gap semiconductor has been deposited upon a small-band gap semiconducting core substrate through an innovative method. Despite its own advantages, the mentioned method is prone to yield non-uniform deposition of inorganic materials on small cores. Besides, the fabrication process demands high temperatures and long aging times as its other downsides.
In an attempt to refine and improve the aforementioned synthesis method, a number of researchers at the Ferdowsi University of Mashhad have come up with core-shell CdS/TiO2 nanocomposites via a surfactant-free approach.
The researchers initially prepared CdS nanoparticles by means of ultrasonication and microemulsification without adding any surfactants. The synthesized nanoparticles were then mixed with TiO2 under ultrasonic irradiation. The latter caused the formation of a thin layer of TiO2 over the CdS nanoparticles and resulted in their swelling. The formation of core-shell structures is due to the involved cavitation phenomenon which forces powerful and high-speed collisions of the nanoparticles. In addition, the ultrasonic waves control the condensation and hydrolysis of titanium tetra isopropoxide as well as shaping of the TiO2 shell.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Photonics/Optics/Lasers
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||