Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chiral asymmetry can emerge from maximal symmetry

These two patterns are mirror images of each other. To see the difference between them, compare how a row with six triangles connects to one of the hexagonal shapes. A chiral pattern of this kind can occur despite the fact that all particles (dots) are the same type and acting with equal force in all directions. Picture credit: Physical Review Letters: “Chiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions”.
These two patterns are mirror images of each other. To see the difference between them, compare how a row with six triangles connects to one of the hexagonal shapes. A chiral pattern of this kind can occur despite the fact that all particles (dots) are the same type and acting with equal force in all directions. Picture credit: Physical Review Letters: “Chiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions”.

Abstract:
Researchers at Chalmers have shown that maximally symmetric systems of particles can spontaneously produce two different patterns, which are mirror images of each other. The results have been published in the prestigious journal Physical Review Letters - one of four articles from the research group in the same journal within a short period of time. The research group is working towards a mathematical design of self-assembling nanomaterials.

Chiral asymmetry can emerge from maximal symmetry

Gothenburg, Sweden | Posted on June 6th, 2012

The Chalmers researchers are working on so-called self-assembling systems. The aim is to calculate how to construct molecular building blocks which, when mixed together, self-assemble into advanced nanomaterials - like pieces of a puzzle that completes itself.

An important property in many chemical and physical systems is something called chirality. Most larger molecules are chiral, which means they exist in two different versions that are mirror images of each other, like our left and right hands. The two versions often produce a completely different effect in, for example, the human body. One well known example of this is the drug thalidomide, where one chiral variation of the active molecule can cause birth defects.

Chirality normally occurs when different types of particle or atoms combine into complex molecules. Researchers at Chalmers have now, however, demonstrated something completely new in the field of physics: chirality can occur spontaneously, even in systems that comprise only a single type of basic, spherically symmetric particle. This means that it doesn't matter how the particles are rotated in relation to one another. The forces acting between the particles depend only on the distance between them.

"Chiral asymmetry can therefore occur spontaneously in a system where the basic condition is maximal symmetry", says Martin Nilsson Jacobi, head of the research group. "This is an important breakthrough in our attempt to develop self-assembling materials. It may also shed new light on the issue of why chirality is so prevalent in nature."

The basis for the discovery is a mathematical method developed by the research group. This method enables them to take any crystal and calculate exactly which forces are required between the particles to form this exact crystal. This is a new technique for designing self-assembling systems, and has also been published in Physical Review Letters.

The majority of researchers in the field use experiments and data simulations to cope with the enormous complexity represented by self-assembling systems. To design the building blocks that lead to a desired structure, the components are gradually altered to try and achieve the correct final result. Chalmers researchers, however, calculate the solution to the design problem in advance.

"We design the building blocks mathematically", says Martin Nilsson Jacobi. "So far, the forces between the particles produced using our methods are too complicated to be implemented in the lab, but we are working to simplify them in various ways."

The group is currently developing analytical methods to construct nanoparticles whose surfaces are covered by molecules in a set pattern. The molecules will enable the particles to combine in exactly the right way to form desired structures.

"Research into material manufacturing is currently focusing increasingly on self-assembling materials", says Martin Nilsson Jacobi. "One source of inspiration is living cells, where self-assembly and self-reparation take place all the time. Incredibly complex molecular machineries are assembled spontaneously, when atoms and molecules attach themselves to one another with different types of bindings."

Researchers across the world are now attempting to emulate these systems, which evolution has created and fine-tuned over millions of years. They can also create wholly new materials with exotic properties which do not occur in nature, so-called metamaterials. Examples are materials that do not propagate sound in certain frequency bands, or materials that do not expand when heated.

####

About Chalmers University of Technology
Chalmers University of Technology performs research and education in technology, science and architecture, with a sustainable future as overall vision. Chalmers is well-known for providing an effective environment for innovation and has eight Areas of Advance – Built Environment, Energy, Information and Communication Technology, Life Science, Materials Science, Nanoscience and Nanotechnology, Production, and Transportation. Situated in Gothenburg, Sweden, Chalmers has 13,000 students and 2,500 employees.

For more information, please click here

Contacts:
Martin Nilsson Jacobi
Professor in Complex systems
Chalmers University of Technology
+46 31-772 31 66
or +46 730-79 58 22


Christian Borg
+46 - (0)31 772 3395

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationChiral Surfaces Self-Assembling in One-Component Systems with Isotropic Interactions

"Asymmetric Patterns from Symmetric Forces":

"Designer lattices" (joint comments on two articles published in the same journal edition):

"Where stripes come from":

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Physics

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project