Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Simple, cheap way to mass-produce graphene nanosheets: Researchers in South Korea and CWRU devise new process

Abstract:
Mixing a little dry ice and a simple industrial process cheaply mass-produces high-quality graphene nanosheets, researchers in South Korea and Case Western Reserve University report.

Simple, cheap way to mass-produce graphene nanosheets: Researchers in South Korea and CWRU devise new process

Cleveland, OH | Posted on March 26th, 2012

Graphene, which is made from graphite, the same stuff as "lead" in pencils, has been hailed as the most important synthetic material in a century. Sheets conduct electricity better than copper, heat better than any material known, are harder than diamonds yet stretch.

Scientists worldwide speculate graphene will revolutionize computing, electronics and medicine but the inability to mass-produce sheets has blocked widespread use.

A description of the new research will be published the week of March 26 in the online Early Edition of the Proceedings of the National Academy of Sciences. The story is embargoed until Monday, March 26, 2012 at 3 p.m. U.S. Eastern time

Jong-Beom Baek, professor and director of the Interdisciplinary School of Green Energy/Advanced Materials & Devices, Ulsan National Institute of Science and Technology, Ulsan, South Korea, led the effort.

"We have developed a low-cost, easier way to mass produce better graphene sheets than the current, widely-used method of acid oxidation, which requires the tedious application of toxic chemicals," said Liming Dai, professor of macromolecular science and engineering at Case Western Reserve and a co-author of the paper.

Here's how:

Researchers placed graphite and frozen carbon dioxide in a ball miller, which is a canister filled with stainless steel balls. The canister was turned for two days and the mechanical force produced flakes of graphite with edges essentially opened up to chemical interaction by carboxylic acid formed during the milling.

The carboxylated edges make the graphite soluble in a class of solvents called protic solvents, which include water and methanol, and another class called polar aprotic solvents, which includes dimethyl sulfoxide.

Once dispersed in a solvent, the flakes separate into graphene naonsheets of five or fewer layers.

To test whether the material would work in direct formation of molded objects for electronic applications, samples were compressed into pellets. In a comparison, these pellets were 688 times better at conducting electricity than pellets yielded from the acid oxidation of graphite.

After heating the pellets at 900 degrees Celsius for two hours, the edges of the ball-mill-derived sheets were decarboxylated, that is, the edges of the nanosheets became linked with strong hydrogen bonding to neighboring sheets, remaining cohesive. The compressed acid-oxidation pellet shattered during heating.

To form large-area graphene nanosheet films, a solution of solvent and the edge-carboxylated graphene nanosheets was cast on silicon wafers 3.5 centimeters by 5 centimeters, and heated to 900 degrees Celsius. Again, the heat decarboxylated the edges, which then bonded with edges of neighboring pieces. The researchers say this process is limited only by the size of the wafer. The electrical conductivity of the resultant large-area films, even at a high optical transmittance, was still much higher than that of their counterparts from the acid oxidation.

By using ammonia or sulfur trioxide as substitutes for dry ice and by using different solvents, "you can customize the edges for different applications," Baek said. "You can customize for electronics, supercapacitors, metal-free catalysts to replace platinum in fuel cells. You can customize the edges to assemble in two-dimensional and three-dimensional structures."

US-Korea NBIT, World Class University and Basic Research Laboratory programs through the National Research Foundation of Korea and the U.S, Air Force Office of Scientific Research funded the research.

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project