Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Baolab announces evaluation kits for its award winning NanoEMS MEMS - available to customers

Abstract:
Baolab Microsystems has announced that it will have evaluation kits of its recently announced 3D NanoCompass™ available at the end of February 2012. This electronic 3-axis CMOS MEMS NanoCompass technology uses Baolab's patented, award winning NanoEMS™ technology to create nanoscale MEMS (Micro Electro Mechanical Systems) within the standard metal structure of a high volume manufactured CMOS wafer.

Baolab announces evaluation kits for its award winning NanoEMS MEMS - available to customers

Barcelona, Spain | Posted on January 16th, 2012

"We are now producing NanoEMS sensors in volume in a standard CMOS production line." said Dave Doyle, Baolab's CEO. "The move from lab to fab is a significant milestone for the company, proving that our innovative technology is reliable, scalable and repeatable. This was the critical stage that our customers have been waiting for. NanoEMS makes it much easier and more cost effective to integrate MEMS sensors with microcontrollers and associated electronics all on the same chip in the same CMOS production line. This is the breakthrough that will enable high volume, consumer electronics products to have intelligent sensors, meeting the increasing demand for smarter, more aware devices."

NanoEMS technology not only offers significant cost reductions in motion MEMS sensors but Baolab envisages the possibility for NanoEMS structures to be easily incorporated into ASICs for applications such as RF Antennas, RF switches, Near Field Communications and Automotive. Possible areas that Baolab and its customers are investigating are:-

Vibrating antennas

These overcome the limitations of classic (static) antennas such as compact superdirective/superesolution antennas/lenses that require phase shifters and gains with an accuracy not currently realistic. Vibrating antennas make these feasible along with spatial multiplexing communications for mobile telecoms and internet.

Thermo-magnetic RF switches & antennas

By exploiting the low value of the Curie temperature of Nickel, it is possible to build RF switches, filters and reconfigurable antennas. This creates a novel category of reconfigurable RF MEMS components which are highly reliable, since there are no moving parts, achieving compelling RF specs, low power consumption and low cost thanks to CMOS processing.

Modal switches

This novel topology enables compelling specifications for RF switches with low-capacitance ratio and high isolation, using low cost, low resistivity CMOS substrates. The principle is based on transferring power from the different transmission modes in a transmission line, using reconfigurable MEMS loads to balance and unbalance the line.

Integrated passives: inductors, transformers, capacitors

Integrated inductors with a helicoidal shape typical of off-chip inductors, offer reduced losses (higher Q) and smaller parasitic capacitance (higher resonant frequency). It is also possible to create transformers with any winding ratio.

Integrated capacitors for low frequency applications, especially power, where the tangent capacitance is used instead of the traditional approach using secant capacitance. When capacitors are used in voltage regulators, only a small fraction of the charge stored in the capacitor is typically used to regulate the voltage. This kind of capacitor allows a higher percentage of the stored charge to be used to regulate the voltage, which makes it possible to implement smaller, integrated filters and regulators, with superior performance.

RF filters

The small feature size of CMOS processing makes it is possible to implement RF MEMS filters up to the GHz band required for cell phone communications and significantly increase the electromechanical coupling. Current MEMS RF mechanical filters have a problem with very low electromechanical coupling, which means low sensitivity, that they try to offset by means of using a very high voltage but with limited success.

Power converters

NanoEMS™ MEMS enable integrated charge pumps and power supplies, which are lower in cost, more compact and more efficient.

####

About Baolab Microsystems
Baolab has developed an innovative technology called NanoEMS™ that enables MEMS to be created inside the CMOS wafer using standard manufacturing techniques. This enables them to be made an order of magnitude smaller than existing techniques of building MEMS on the surface of the wafer and also at a fraction of the cost. Privately owned, Baolab is based in Barcelona, Spain.

To learn more about Boalab's NanoEMS technology and products, visit www.baolab.com/compass.htm or email

For more information, please click here

Contacts:
Nigel Robson
Vortex PR
+44 1481 233080


Tel.: +34-93-394-17-70

Copyright © Baolab Microsystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project