Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes

May 28th, 2011

A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes

Abstract:
Introduction

While carbon nanotubes (CNT) and carbon nanofibers (CNF) are both hollow, nanometerals in scale, and produced in a similar manner, there are distinct differences which significantly impact their performance and ability to be processed. The primary differences between the materials are morphology, size, ease of processing, and price.

Morphology

Carbon nanofibers, also known as Stacked-Cup Carbon Nanotubes, have a unique morphology in that graphene planes are canted from the fiber axis, resulting in exposed edge planes on the interior and exterior surfaces of the fiber. CNTs, on the other hand, typically resemble an assembly of concentric cylinders of graphene. To illustrate the difference in morphology, Figure 1 below shows a side by side comparison of A) Multi-walled carbon nanotubes and B) stacked cup carbon nanotubes.

Source:
nanopaprika.eu

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Quantum pumping in molecular junctions August 16th, 2024

Blog sites

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project