Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Abstract:
In the hard drive industry, the rapid growth of storage density has been propelled in part by developments in the sensors used to read the magnetic "bits" on the disk. Recently, the use of giant magnetoresistance (GMR) in such sensors, with current flowing in the plane of a multilayer film, has given way to the use of tunneling magnetoresistance, where current flows perpendicular to the plane of the multilayer through a tunnel barrier. To avoid the prohibitively high resistance of smaller tunnel junction sensors, future miniaturization of the sensors is projected to again require the use of GMR in all-metal multilayers, but with current flowing perpendicular to the plane. In a collaboration with researchers at Hitachi Global Storage Technologies, CNST researchers used their recently developed spin wave Doppler technique to measure the current polarization in novel (CoFe)1-xGex alloys being investigated for possible use in future disk drive read head sensors.* A critical parameter in determining the GMR of a multilayer sensor film is the current polarization, which is the degree to which the current carried in a magnetic metal is carried by electrons with spins either parallel or anti-parallel to the magnetization. The CNST researchers' measurement technique used nanostructured antennas to launch and detect spin waves in current-carrying (CoFe)1-xGex stripes, allowing them to measure shifts of a resonant transmission frequency that revealed the current-induced drift velocity of the magnetization and the current polarization. The results indicate polarization up to 95 % in these alloys. Although comparable polarization values have been found in materials that require annealing at prohibitively high temperatures, the (CoFe)1-xGex alloys are compatible with sensor manufacturing.

CNST Researchers Use Spin Waves to Measure Magnetic Polarization of Electrical Current

Boulder, CO | Posted on March 9th, 2011

Enhanced magnetization drift velocity and current polarization in (CoFe)1−xGex alloys, M. Zhu, B. D. Soe, R. D. McMichael, M. J. Carey, S. Maat, and J. R. Childress, Applied Physics Letters 98, 072510-072510-3 (2011).

####

For more information, please click here

Contacts:
Robert McMichael
301-975-5121

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Sensors

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project