Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New alternative to traditional semiconductors

Arthur Epstein
Arthur Epstein

Abstract:
Researchers at Ohio State University have demonstrated the first plastic computer memory device that utilizes the spin of electrons to read and write data.

New alternative to traditional semiconductors

Columbus, OH | Posted on August 10th, 2010

An alternative to traditional microelectronics, so-called "spintronics" could store more data in less space, process data faster, and consume less power.

In the August 2010 issue of the journal Nature Materials, Arthur J. Epstein and colleagues describe how they created a prototype plastic spintronic device using techniques found in the mainstream computer industry today.

At this point, the device is little more than a thin strip of dark blue organic-based magnet layered with a metallic ferromagnet and connected to two electrical leads. (A ferromagnet is a magnet made of ferrous metal such as iron. Common household refrigerator magnets are ferromagnets.) Still, the researchers successfully recorded data on it and retrieved the data by controlling the spins of the electrons with a magnetic field.

Epstein, Distinguished University Professor of physics and chemistry and director of the Institute for Magnetic and Electronic Polymers at Ohio State, described the material as a hybrid of a semiconductor that is made from organic materials and a special magnetic polymer semiconductor. As such, it is a bridge between today's computers and the all-polymer, spintronic computers that he and his partners hope to enable in the future.

Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present in a void within the material. But researchers have long known that electrons can be polarized to orient in particular directions, like a bar magnet. They refer to this orientation as spin -- either "spin up" or "spin down" -- and have been working on a way to store data using spin. The resulting electronics, dubbed spintronics, would effectively let computers store and transfer twice as much data per electron.

But higher data density is only part of the story.

"Spintronics is often just seen as a way to get more information out of an electron, but really it's about moving to the next generation of electronics," Epstein said. "We could solve many of the problems facing computers today by using spintronics."

Typical circuit boards use a lot of energy. Moving electrons through them creates heat, and it takes a lot of energy to cool them. Chip makers are limited in how closely they can pack circuits together to avoid overheating.

Flipping the spin of an electron requires less energy, and produces hardly any heat at all, he explained. That means that spintronic devices could run on smaller batteries. If they were made out of plastic, they would also be light and flexible.

"We would love to take portable electronics to a spin platform," Epstein said. "Think about soldiers in the field who have to carry heavy battery packs, or even civilian ‘road warriors' commuting to meetings. If we had a lighter weight spintronic device which operates itself at a lower energy cost, and if we could make it on a flexible polymer display, soldiers and other users could just roll it up and carry it. We see this portable technology as a powerful platform for helping people."

The magnetic polymer semiconductor in this study, vanadium tetracyanoethanide, is the first organic-based magnet that operates above room temperature. It was developed by Epstein and his long-standing collaborator Joel S. Miller of the University of Utah.
Postdoctoral researcher Jung-Woo Yoo called the new material an important milestone in spintronic research.

"Our main achievement is that we applied this polymer-based magnet semiconductor as a spin polarizer -- meaning we could save data (spin up and down) on it using a tiny magnetic field -- and a spin detector -- meaning we could read the data back," he said. "Now we are closer to constructing a device from all-organic material."

In the prototype device, electrons pass into the polymer, and a magnetic field orients them as spin up or spin down. The electrons can then pass into the conventional magnetic layer, but only if the spin of electrons there are oriented in the same way. If they are not, the resistance is too high for the electrons to pass. So the researchers were able to read spin data from their device based on whether the resistance was high or low.

Collaborators at the University of Wisconsin-Madison prepared a sample of conventional magnetic film, and Yoo and his Ohio State colleagues layered it together with the organic magnet to make a working device.

As a test, the researchers exposed the material to a magnetic field that varied in strength over time. To determine whether the material recorded the magnetic pattern and functioned as a good spin injector/detector, they measured the electric current passing through the two magnetic layers. This method is similar to the way computers read and write data to a magnetic hard drive today.

The results, Yoo said, were "textbook" -- they retrieved the magnetic data in its entirety, exactly as they stored it.

The patented technology should transfer easily to industry, he added.

"Any place that makes computer chips could do this. Plus, in this case, we made the device at room temperature, and the process is very eco-friendly."

Coauthors on the paper included Chia-Yi Chen and Vladimir Prigodin of Ohio State, and H.W. Jang, C.W. Bark, and Chang-Beom Eom of the University of Wisconsin-Madison.

This research was funded by the Air Force Office of Scientific Research, the Department of Energy, the National Science Foundation, and the Office of Naval Research.

####

For more information, please click here

Contacts:
Arthur J. Epstein
(614) 292-1133


Written by Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project