Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > When molecules leave tire tracks

Abstract:
A new approach to optimizing molecular self-organization

When molecules leave tire tracks

Munich | Posted on February 18th, 2010

Some classes of molecules are capable of arranging themselves in specific patterns on surfaces. This ability to self-organize is crucial for many technological applications, which are dependend on the assembly of ordered structures on surfaces. However, it has so far been virtually impossible to predict or control the result of such processes. Now a group of researchers led by Dr. Bianca Hermann, a physicist from the Center for Nanoscience (CeNS) at LMU Munich, reports a significant breakthrough: By combining statistical physics and detailed simulations with images obtained by scanning tunnelling microscopy (STM), the team has been able to formulate a simple model that can predict the patterns observed. "With the help of the model, we can generate a wide variety of patterns that reproduce surprisingly well the arrangements observed experimentally", says Hermann. "We want to extend this approach to other surface symmetries. Already now the areas of molecular electronics, sensor applications, surface catalysis and organic photovoltaics can profit from our model. Its ability to predict structures formed by self-organization allows optimization of molecular building blocks prior to synthesis." (NanoLetters online, 16 February 2010)

When "mother nature" does the engineering, molecules can self-organize into complex structures - a first step in the formation of membranes, cells and other molecular systems. The principle of self-organization, which allows very economical use of resources, is also exploited in the production of functionalized surfaces required in molecular electronics, sensor applications, catalysis and photovoltaic components. The idea of the manufacturing process is that molecular components are brought into contact with a substrate material, and then "magically" find their preferred positions in the desired molecular network. The starting components are selected to display specific structural and chemical features intended for the envisaged application. However, the optimization of the molecular adlayers depends largely on a trial-and-error approach, and is therefore complicated and time-consuming.

To develop the new molecular-interaction site model, Dr. Herrmann's group collaborated with Priv. Doz. Dr. Thomas Franosch und Professor Erwin Frey within the Cluster of Excellence "Nanosystems Initiative Munich" (NIM). The problem was tackled using an approach from statistical physics known as Monte Carlo method, which allows one to conduct a detailed computer simulation on the statistics of molecular interactions. The structural motifs so generated were compared with experimental high-resolution images of molecular patterns obtained by STM. Marta Balbás Gambra, a doctoral student, began each simulation with a mathematical representation of a collection of hundreds of randomly oriented particles of defined conformation. These schematic molecules were then perturbed by - computationally - adding energy, causing the population to adopt a new configuration.

Using this simulation strategy, one can generate a greater variety of patterns than are found naturally, and many of these corresponded closely to the real molecular patterns revealed by STM. "In one case we actually predicted a pattern that was only later verified with STM", reports doctoral student Carsten Rohr. According to the laws of thermodynamics, physical systems tend to adopt the state with the most favourable (i.e. lowest) energy. Experimental tests showed that different molecular configurations interconvert until an arrangement predominates that is reminiscent of tyre tracks. And indeed, the Monte Carlo approach had predicted that this arrangement corresponds to the state with the lowest energy.

"In the end, we were able to show that the molecular geometry and a few salient features encode the structural motifs observed", explains theorist Franosch. "We plan to extend the approach to other types of surface symmetries, but the model already provides an important theoretical tool, because it helps us to forecast the type of surface pattern that a given functional molecule will form. This means that the design of molecules can be optimized during the synthetic phase, so as to obtain surfaces with the desired characteristics", says Hermann. The physicists in the group, who come from different scientific backgrounds and were able to pool their expertise for this project, envisage multiple potential applications for their model in molecular electronics, sensor technology, catalysis and photovoltaics. Further possibilities include its use for predicting the results of other types of molecular interactions also on partially patterned substrates. (suwe)


Publication:
"Molecular Jigsaw: Pattern Diversity Encoded by Elementary Geometrical Features",
C. Rohr, M. Balbás Gambra, K. Gruber, E. C. Constable, E. Frey, T. Franosch, and B. A. Hermann
NanoLetters online, 16 February 2009
DOI: 10.1021/nl903225j

####

About Ludwig-Maximilians-Universitaet Muenchen
With degree programs available in 150 subjects in numerous combinations, the array of courses we have to offer is extremely wide. Some 44,000 students, 15 percent of whom come to us from abroad, are currently taking advantage of these opportunities. They view their studies as an investment in the future, a launching pad for their later careers.

LMU Munich takes the education of young people very seriously. When we speak of academic diversity, we also mean a comprehensive education that encompasses social skills alongside a critical awareness of values and history. This includes the Munich legacy of the Weisse Rose, the student-based resistance group that opposed Nazism.

We put our faith in open minds, imagination and promising ideas – that’s why I invite you to join us to learn, teach and conduct research at LMU Munich!

Professor Dr. Bernd Huber
President, Ludwig-Maximilians-Universität München

For more information, please click here

Contacts:
Dr. Bianca Hermann
Cluster of Excellence “Nanosystems Initiative Munich“ (NIM) and Center for NanoScience (CeNS), LMU Munich; Walther Meissner Institute of the Bavarian Academy of Sciences and Humanities
Phone: +49 (0) 89 / 289 14258
Fax: +49 (0) 89 / 289 14206

www.wmi.badw-muenchen.de/spm

Copyright © Ludwig-Maximilians-Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project