Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Conductive eTextiles: Stanford finds a new use for cloth

Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.
Recipe for conductive textile: Dip cloth in nanotube ink, dry in oven for 10 minutes at 120 degrees Celsius.

Abstract:
Stanford researchers have moved from making batteries from paper to making batteries from cloth. Your-T-shirt could become a lighted, moving display.

Conductive eTextiles: Stanford finds a new use for cloth

Stanford, CA | Posted on February 5th, 2010

A team of Stanford researchers is producing batteries and simple capacitors from ordinary textiles dipped in nanoparticle-infused ink. The conductive textiles - dubbed "eTextiles" - represent a new class of integrated energy storage device, born from the synthesis of prehistoric technology with cutting-edge materials science.

"We have been developing all kinds of materials, trying to revolutionize battery performance," said Yi Cui, assistant professor of materials science and engineering at Stanford. "Recently, we started to think about how to make batteries in a very different way from before."

While conventional batteries are made by coating metallic foil in a particle slurry and rolling it into compact form - a capital-intensive process - the new energy textiles were manufactured using a simple "dipping and drying" procedure, whereby a strip of fabric is coated with a special ink formula and dehydrated in the oven.

The procedure works for manufacturing batteries or supercapacitors, depending on the contents of the ink - oxide particles such as LiCoO2 for batteries; conductive carbon molecules (single-walled carbon nanotubes, or SWNTs) for supercapacitors. Up to now, the team has only used black ink, but Cui said it is possible to produce a range of colors by adding different dyes to the carbon nanotubes.

Efficient energy storage

What's more, the lightweight, flexible and porous character of natural and synthetic fibers has proven to be an ideal platform for absorbing conductive ink particles, according to postdoctoral scholar Liangbing Hu, who led the energy textile research. That helps explain why treated textiles make such efficient energy storage devices, he said.

Cui's team had previously developed paper batteries and supercapacitors using a similar process, but the new energy textiles exhibited some clear advantages over their paper predecessors. With a reported energy density of 20 Watt-hours per kilogram, a piece of eTextile weighing 0.3 kilograms (about an ounce, the approximate weight of a T-shirt) could hold up to three times more energy than a cell phone battery.

Aside from enhanced energy storage capacity, eTextiles are remarkably durable and can withstand greater mechanical stress.

"The whole thing can be stretchable as well, and extend to more than twice its length," Hu explained. "You can wash it, put it in all kinds of solvents - it's very stable."

The potential applications of wearable power are manifold, ranging from health monitoring to moving-display apparel. (The latter, Cui mused, would make quite a splash if worn by Stanford sports teams.)

Cui said the new eTextiles are generating buzz at industry conventions, where big-name brands have expressed an interest in developing reactive, high-performance sportswear using the new technology. The U.S. military also is probing the possibility of integrating energy textiles into its battle array, a move that may one day lighten a soldier's carrying load.

Interest in developing new markets

"There's a really strong interest in developing new markets in consumer electronics," Cui summarized. "We aren't there yet, but this is an emergent industry."

In the meantime, the team will continue its current research trajectory with two themes in mind: how best to introduce eTextiles into real markets, and the fundamental science behind what makes their product work so effectively.

"This is the right time to really see what we learn from nanoscience and do practical applications that [are] extremely promising," Cui said. "The beauty of this is it combines the lowest cost technology that you can find to the highest tech nanotechnology to produce something great. I think this is a very exciting idea … a huge impact for society."

The team's findings appear in the January online edition of Nano Letters, a publication of the American Chemical Society, under the title "Stretchable, Porous, and Conductive Energy Textiles."

Aimee Miles is a science-writing intern at the Stanford News Service.

####

About Stanford University
Located between San Francisco and San Jose in the heart of Silicon Valley, Stanford University is recognized as one of the world's leading research and teaching institutions.

For more information, please click here

Contacts:
Media Contact
Dan Stober
Stanford News Service
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Sports

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project