Home > News > Your Next Invisibility Cloak Might Be Made of Water
January 11th, 2010
Your Next Invisibility Cloak Might Be Made of Water
Abstract:
Invisibility cloaks continue to taunt us in 2010 with their promise of Harry Potter-style shenanigans. But New Scientist points to a new proposal that consists of silver-coated nanoparticles floating in water. Such nanoparticles would self-assemble into chains that are controllable by magnetic fields of different strengths, Chinese scientists say -- at least in theory.
Chains and columns of tiny magnetite balls -- each just 10 nanometers in diameter -- would align themselves in the direction of the magnetic field. That could lead to a negative refraction index, so that underwater objects would appear to be out of the water entirely. Cloaking technology of this sort could also bend the light around an object so that nothing appears.
Source:
popsci.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||