Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Observation of confinement phenomenon in condensed matter

Abstract:
Force of interaction between magnetic particles grows stronger with increasing distance

Observation of confinement phenomenon in condensed matter

Upton, NY | Posted on November 30th, 2009

An experiment has confirmed that spinons, particle-like magnetic excitations, can be confined in a magnetic insulator similar to the way elementary quarks are confined within individual protons and neutrons. The finding, in a well-described magnetic system, may offer new ways to explore Quantum Chromodynamics, the theory that describes the fundamental interactions of quarks.

The observations of spinon confinement were made at the Science and Technology Facilities Councils Rutherford Appleton Laboratory in the United Kingdom by an international team of physicists. The team realized serendipitously that a theory developed 12 years earlier by theoretical physicist Alexei Tsevelik, now at the U.S. Department of Energy's Brookhaven National Laboratory, and collaborators accurately predicted the current findings. Together, the scientists describe the theory and their new observations in the November 29th issue of Nature Physics.

"The concept of confinement is one of the central ideas in modern physics, being at the core of the theory of nuclear forces," Tsvelik said. "In certain systems, when constituent particles are bound together by an interaction whose strength increases with increasing particle separation, individual particles cannot exist in a free state and therefore can be observed only indirectly."

The most famous example of confinement is of quarks which are held together in protons and neutrons, for example, by the strong force, a force that grows stronger with increasing distance.

"It has been interesting for us that a similar situation of confinement can be modeled in condensed matter systems," Tsvelik said. "Instead of quarks being confined in protons and neutrons, we have other quantum entities that act just like particles -- elementary excitations of magnetic systems called spinons."

In the case of the current experiment, the spinons exist on parallel chains of copper-oxide separated by inert calcium. Spinons on individual chains are not confined, but as soon as two chains are brought together to form ladder-like arrangements, the inter-ladder interactions confine the spinons.

"That is, the spinons can appear now only in pairs and cannot fly away from each other too far," Tsvelik said. "The result of this confinement is a particle we call a magnon. It is like two quarks pairing up to form a meson."

The original theory paper published by Tsvelik and collaborators 12 years ago described the magnetic excitation spectrum of such a system in detail. The team performing the experiments at Rutherford observed a signature that fit that description.

"Now that we have an example of confinement in a condensed matter system, our next step is to check further predictions of the theory to make sure there are no unpleasant surprises," Tsvelik said. The scientists will also measure the responses in other compounds to see if they observe similar effects.

Tsvelik's research is funded by the DOE Office of Science.

Upon publication, the paper can be downloaded at: dx.doi.org/10.1038/NPHYS1462

Additional news release on this research from Helmholtz-Zentrum Berlin: www.bnl.gov/bnlweb/pubaf/pr/docs/PR-HZB.pdf

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOEs Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization.

The Science and Technology Facilities Council ensures the UK retains its leading place on the world stage by delivering world-class science; accessing and hosting international facilities; developing innovative technologies; and increasing the socio-economic impact of its research through effective knowledge exchange partnerships. The Council has a broad science portfolio including Astronomy, Particle Physics, Particle Astrophysics, Nuclear Physics, Space Science, Synchrotron Radiation, Neutron Sources and High Power Lasers. In addition the Council manages and operates three internationally renowned laboratories: The Rutherford Appleton Laboratory, Oxfordshire; The Daresbury Laboratory, Cheshire; and The UK Astronomy Technology Centre, Edinburgh. For more information, visit: www.stfc.ac.uk.

For more information, please click here

Contacts:
Karen McNulty Walsh

631-344-8350

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Quantum nanoscience

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project