Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists watch as peptides control crystal growth with ‘switches, throttles and brakes’

Aspartic acid-rich peptides adsorbed on a calcium oxalate monohydrate (COM) crystal surface. Models of a peptide and COM crystal structure are overlain on an AFM image collected during growth of the [010] face of COM. The rendered AFM image reveals the molecular structure of the crystal surface including individual kink-sites along a single atomic step. The high peaks show the individual oxalate groups and the dimension along the bottom edge of the image is 60 angstroms.
Aspartic acid-rich peptides adsorbed on a calcium oxalate monohydrate (COM) crystal surface. Models of a peptide and COM crystal structure are overlain on an AFM image collected during growth of the [010] face of COM. The rendered AFM image reveals the molecular structure of the crystal surface including individual kink-sites along a single atomic step. The high peaks show the individual oxalate groups and the dimension along the bottom edge of the image is 60 angstroms.

Abstract:
By producing some of the highest resolution images of peptides attaching to mineral surfaces, scientists have a deeper understanding how biomolecules manipulate the growth crystals. This research may lead to a new treatment for kidney stones using biomolecules.

Scientists watch as peptides control crystal growth with ‘switches, throttles and brakes’

Livermore, CA | Posted on November 25th, 2009

The research, which appears in the Nov. 23 online edition of the journal Proceedings of the National Academy of Science, explores how peptides interact with mineral surfaces by accelerating, switching and inhibiting their growth.

The team, made up of researchers from Lawrence Livermore National Laboratory, the Molecular Foundry at Lawrence Berkeley, the University of California, Davis and the University of Alabama, for the first time produced single-molecule resolution images of this peptide-mineral interaction.

Inorganic minerals play an important role in most biological organisms. Bone, teeth, protective shells or the intricate cell walls of marine diatoms are some displays of biomineralization, where living organisms form structures using inorganic material. Some minerals also can have negative effects on an organism such as in kidney and gallstones, which lead to severe suffering and internal damage in humans and other mammals.

Understanding how organisms limit the growth of pathological inorganic minerals is important in developing new treatment strategies. But deciphering the complex pathways that organisms use to create strong and versatile structures from relatively simple materials is no easy feat. To better understand the process, scientists attempt to mimic them in the laboratory.

By improving the resolution power of an Atomic Force Microscope (AFM), the PNAS authors were able to image individual atomic layers of the crystal interacting with small protein fragments, or peptides, as they fell on the surface of the crystal.

"Imaging biomolecules that are weakly attached to a surface, while simultaneously achieving single-molecule resolution, is normally difficult to do without knocking the molecules off," said Raymond Friddle, an LLNL postdoctoral fellow.

But the team improved upon previous methods and achieved unprecedented resolution of the molecular structure of the crystal surface during the dynamic interaction of each growing layer with peptides. "We were able to watch peptides adhere to the surface, temporarily slow down a layer of the growing crystal, and surprisingly ‘hop' to the next level of the crystal surface."

The images also revealed a mechanism that molecules can use to bind to surfaces that would normally repel them. The high resolution images showed that peptides will cluster together on crystal faces that present the same electronic charge. Under certain conditions the peptides would slow down growth, while under other conditions the peptides could speed up growth.

On another face of the crystal, where the peptides were expected to bind strongly, the researchers found instead that the peptides did not attach to the surface unless the crystal growth slowed. The peptides needed to bind in a specific way to the face, which takes more time than a non-specific attachment. As a result, the growing layers of the crystal were able to shed off the peptides as they attempted to bind.

But when the researchers slowed down the crystal growth rate, the peptides collapsed onto the surface so strongly that they completely stopped growth. The researchers proposed that the phenomenon is due to the unique properties of bio-polymers, such as peptides or polyelectrolytes, which fluctuate in solution before resting in a stable configuration on a surface.

"The results of the catastrophic drop in growth by peptides suggest ways that organisms achieve protection against pathological mineralization," said Jim De Yoreo, the project lead and deputy director of research at LBNL's Molecular Foundry. "Once growth is halted, a very high concentration of the mineral will be needed before growth can again reach significant levels."

He said designing polyelectrolyte modifiers in which the charge, size and ability to repel water can be systematically varied would allow researchers to create the equivalent of "switches, throttles and brakes" for directing crystallization.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project