Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemical engineering professor awarded two grants to investigate directed self-assembly

Eric Furst
Eric Furst

Abstract:
Eric Furst, associate professor in the Department of Chemical Engineering at the University of Delaware, has received two grants totaling $727,000 for his work on directed self-assembly of soft materials.

Chemical engineering professor awarded two grants to investigate directed self-assembly

Newark, DE | Posted on October 20th, 2009

The National Science Foundation (NSF) has awarded Furst $292,000 to investigate interactions and self-assembly of anisotropic colloidal particles in electric fields, while the Department of Energy (DOE) has granted him $435,000 to study directed self-assembly of nanodispersions.

Soft materials, which are neither crystalline solids nor simple liquids but lie somewhere in between, include soaps, paints, gels, plastics, glues, and biological tissues.

"Biological systems have provided us with the inspiration to engineer modern soft materials using self-assembly," Furst explains. "We're using the same principles to manipulate and control the interactions of colloidal particles and other building blocks so that they spontaneously organize themselves into structures that perform a desired function."

According to Furst, directed self-assembly is especially important for the development of nanotechnology, and his two recent grants are an outgrowth of previous funding to a group of faculty in the UD Department of Chemical Engineering through NSF's Nanotechnology and Interdisciplinary Research Team (NIRT) program.

"Engineering micro- to nanoscale devices and nanostructured materials requires control and understanding of the thermodynamics and kinetics of self-assembly of nanoscale building blocks in solution," he says.

One approach to providing that control is to use electric fields to guide the process in a particular way. The new NSF grant will support work addressing that issue, with a particular focus on unusual particles known as doublets, which resemble two spheres pushed together.

"We're interested in seeing how these particles polarize in an electric field and how their shape affects their ability to form a structure," Furst says. "The work promises to give us new insights into directed self-assembly."

The DOE project will be directed toward how the technology can be used to harvest soft materials for energy applications.

Article by Diane Kukich
Photo by Doug Baker

####

About University of Delaware
The University of Delaware has a great tradition of excellence, from our founding as a small private academy in 1743, to the research-intensive, technologically advanced institution of today.

Our alumni tell our story of achievement, from our first class, which included three signers of the Declaration of Independence and one signer of the U.S. Constitution, to the more than 140,000 living Blue Hens who are making vital contributions to the world--in science, business, education, the arts, policy, health care, the environment, and many other areas. Vice President Joseph R. Biden Jr. and his wife, Jill, are both UD alumni.

The University received its charter from the State of Delaware in 1833 and was designated one of the nationís historic Land Grant colleges in 1867. Today, UD is a Land Grant, Sea Grant and Space Grant institution. UD also is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with very high research activity--a designation accorded to less than 3 percent of U.S. colleges and universities.

For more information, please click here

Contacts:
Phone: (302) 831-2792

www.udel.edu/ocm

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project