Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leti’s Planar-SOI Technology Meets Low-Power, 22nm Node Requirements, Supports Development of “Green” Products

Abstract:
Leti, a leading global research center committed to creating and commercializing innovation in micro- and nanotechnologies, today presented results at the SOI Industry Consortium workshop in Leuven, Belgium, that prove SOI-based planar CMOS meets requirements for low-power, 22nm node devices, offering a practical route to further feature shrink and enabling a significant jump for "green" products.

Leti’s Planar-SOI Technology Meets Low-Power, 22nm Node Requirements, Supports Development of “Green” Products

Grenoble, France | Posted on October 16th, 2009

With unmatched access resistance and electrostatic characteristics, planar SOI is superior to other technologies based on bulk CMOS technology and FinFET architecture. It also shows outstanding performances for low-power applications requiring 22nm technology, such as consumer electronic devices including 4G mobile phones.

"Many transistor architectures have been proposed for the 22nm node and below. At Leti, we favored planar technologies for faster and easier transition to manufacturing," said Laurent Malier, CEO of Leti. "Our recent results prove the strength of this approach. Together with the recent ARM results demonstrating power reduction on 45nm technology, we have proven that SOI technologies offer solutions for low power at a wide variety of nodes, including 22nm and below. Furthermore, we have demonstrated that planar SOI dramatically improves the energy performances of many products that will change our lives, while offering long-term success for many companies involved in these fast-growing markets.

In addition, drain-induced barrier lowering (DIBL) below 100mV/V has been demonstrated and SOI has been proven to enable the reduction of electrostatic parasitics.

While variability is a major challenge to be addressed for the 22nm node, Leti's results prove that variability control is possible with today's state-of-the-art SOI wafers. In particular, variability on threshold voltage was reduced by a factor of two compared with FinFET technologies, at wafer and batch levels.

Leti also showed that fully depleted SOI (FDSOI) CMOS can be scaled down to the 10nm node through tuning the buried oxide and silicon layer thickness. Displayed results show that FDSOI approach also addresses the variability issues for this further shrink.


####

About CEA-Leti
CEA is a French Research and Technology Organization, with activities in three main areas: Energy, Technologies for Information and Healthcare, and Defence and Security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and Microsystems (MEMS) are at the core of its silicon activities. As a major player in the MINATEC® innovation campus, LETI operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families.

For more information, please click here

Contacts:
Clément Moulet, Press Officer
Tel.: +33 4 38 78 03 26

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project