Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UC Riverside Physicist Receives Highest Honor U.S. Government Bestows on Young Scientists or Engineers

Chun Ning (Jeanie) Lau is an associate professor in the Department of Physics and Astronomy at UC Riverside. Photo credit: UCR Strategic Communications.
Chun Ning (Jeanie) Lau is an associate professor in the Department of Physics and Astronomy at UC Riverside. Photo credit: UCR Strategic Communications.

Abstract:
UC Riverside's Chun Ning (Jeanie) Lau has received a national honor that few outstanding researchers who are beginning their independent research careers are given.

Lau, an associate professor of physics, is one of the recipients of the Presidential Early Career Awards for Scientists and Engineers (PECASE) for the 2008 competition. PECASE represents the highest honor a beginning scientist or engineer can receive in the United States.

UC Riverside Physicist Receives Highest Honor U.S. Government Bestows on Young Scientists or Engineers

Riverside, CA | Posted on July 9th, 2009

Established in 1996, the PECASE program recognizes outstanding scientists and engineers who, early in their careers, show exceptional potential for leadership at the frontiers of knowledge. A total of 100 PECASE winners were named for 2008.

Selection for the award is based on nominees' innovative research at the frontiers of science and technology as well as community service demonstrated through scientific leadership, education or community outreach. The White House Office of Science and Technology Policy selects the awardees.

Lau and the other PECASE winners will be presented with their awards at a White House ceremony in the fall of 2009.

Individuals cannot apply for PECASE. A handful of participating funding agencies nominate young scientists and engineers for the awards. Each year the National Science Foundation (NSF) selects up to 20 nominees for PECASE from among those who have received awards under the NSF's CAREER program and who are most likely to become leaders of academic research and education in the twenty-first century.

Lau, the first PECASE winner at UCR, received a CAREER award from NSF in 2008, enabling her to experimentally investigate the electrical properties of graphene coupled to normal and superconducting electrodes. Graphene, first experimentally isolated in 2004, consists of carbon atoms only one atomic layer thick, with the unique characteristic that its electrons behave as if they have zero mass. Graphene has attracted tremendous attention from academic and industrial sectors for its potential as the "material of the future" to supplement or replace silicon in electronic circuits.

Besides graphene, Lau studies nanowires and carbon nanotubes. Her research has helped physicists gain fundamental understanding of how atoms and electrons behave when they are ruled by quantum mechanics. Her lab studies novel electrical properties that arise from the quantum confinement of atoms and charges to nanoscale systems. Her research team has shown that graphene can act as an atomic-scale billiard table, with electric charges acting as billiard balls.

Her other research interests include superconductivity, thermal management and electronic transport in nanostructures, and engineering new classes of nanoscale devices.

An educational component of Lau's research effort is the active involvement of high school, undergraduate, and graduate students, especially minority and women, in her cutting-edge research, taking advantage of the ethnic diversity of UCR's student population and local communities. She is a founding faculty member of the UCR Undergraduate Research Journal. She also organized a "Women in Physics" lunch group that provides a friendly platform for female students, postdocs and faculty members to interact.

After receiving her bachelor's degree in physics from the University of Chicago in 1994, Lau proceeded to Harvard University from where she received her master's and doctoral degrees in physics in 1997 and 2001, respectively. She joined UCR in 2004, after an appointment as a research associate in the Hewlett-Packard Laboratory. At UCR she is a member of the Center for Nanoscale Science and Engineering.

Lau's awards and honors include the Richter Fellowship for Undergraduate Research, 1992; a David W. Grainger Senior Scholarship, 1993; and a Robert T. Poe Faculty Development Grant from the Chinese-American Faculty Association of Southern California, 2007. She has published more than 30 research articles in peer-reviewed journals.

####

About UC Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
edia Relations
900 University Avenue
University Village 204B
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Iqbal Pittalwala
Tel: (951) 827-6050

Copyright © UC Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum nanoscience

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project