Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > IBN Engineers World’s First Tri-Continuous Mesoporous Silica ­ Complex Structure Useful for Catalysis, Separation and Drug Delivery

Abstract:
Technology useful for catalysis, separation and drug delivery

IBN Engineers World’s First Tri-Continuous Mesoporous Silica ­ Complex Structure Useful for Catalysis, Separation and Drug Delivery

Singapore | Posted on April 6th, 2009

Singapore's Institute of Bioengineering and Nanotechnology (IBN) has developed the first tri-continuous mesoporous material using a unique surfactant template. This completely new porous structure previously been predicted only mathematically.

In the current Nature Chemistry, the IBN scientists report that this novel material, named IBN-9 after the research institute, is the first hexagonal nanoscale construct with 3 unconnected interwoven channels. It is by far the most complex mesoporous nanostructure to have been synthesized in real-life and represents a new class of mesoporous materials, which consist of pores of 2-50 nanometers in size.

Mesoporous silica has well-defined nanochannel structures that are formed over templates via self-assembly processes. Mesoporous silica materials have huge surface areas, making them ideal for use as catalysts to facilitate chemical reactions. Their uniform nanometersized pores allow them to separate molecules by size difference. Their pores may also be used to trap drug molecules for controlled drug release. Therefore, the ability to tailor the pore structure of mesoporous material is of fundamental importance for various chemical and biological applications.

"IBN-9 demonstrates that it is possible to create three interwoven but independent pore channel systems along with a unique nano-fiber morphology," said Jackie Y. Ying, Ph.D., who led this research.

"Such a mesostructure makes distinct diffusion rates in different directions possible. This property would be very attractive for gas separation and drug delivery systems" added Dr. Ying, Executive Director of IBN, which is part of Singapore's A*STAR (Agency for Science, Technology and Research).

There has been tremendous interest about tailoring mesoporous materials with unique pore structures and pore sizes. The most complex of these were the bi-continuous structures, which contain two unconnected interwoven channels. These materials are synthesized via self-assembly of silica around surfactant templates.

IBN researchers successfully synthesized the first tri-continuous mesoporous structure by using a specially designed surfactant template, N,N-dimethyl-L-phenylalanine. This surfactant has a unique tunable head-group as well as a long hydrocarbon tail that has variable levels of hydrophobic (water-repellent) qualities. By systematically changing the synthesis conditions using this surfactant, IBN researchers are able to achieve structures with increasing mean curvatures from the bi-continuous cubic IBN-6 to the tri-continuous 3D hexagonal IBN-9, and finally to the 2D hexagonal IBN-10. The structural complexity of IBN-9 and its sister materials opens the possibility of creating even more complex multi-continuous mesostructures.

Original publications: Y. Han et al.; "A Tri-Continuous Mesoporous Material, IBN-9, with a Silica Pore Wall Following a Hexagonal Minimal Surface," Nature Chemistry 2009

S. T. Hyde and G. E. Schröder; "Novel Surfactant Mesostructural Topologies: Between Lamellae and Columnar (Hexagonal) Forms"; Current Opinion in Colloid and Interface Science, 8 (2003) 5-14

####

About Institute of Bioengineering and Nanotechnology
Committed to the pursuit of excellence in biomedical sciences and guided by its mission of “Charting New Frontiers in Science, Engineering and Medicine” of Singapore's life science industry, IBN will:

LEAD - Provide international leadership in bioengineering and nanotechnology

INNOVATE - Conduct innovative research and create intellectual properties

FACILITATE - Play and active role in technology transfer

TRAIN - Foster an exciting multidisciplinary research environment for the training of students and young researchers

For more information, please click here

Contacts:
Tel: +65 6824 7000


31 Biopolis Way
The Nanos, #04-01
Singapore 138669
Fax: +65 6478 9080

Copyright © Chemie.DE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Possible Futures

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Nanobiotechnology

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project