Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New virus-built battery could power cars, electronic devices

Angela Belcher holds a display of the virus-built battery she helped engineer. The battery -- the silver-colored disc -- is being used to power an LED.
Angela Belcher holds a display of the virus-built battery she helped engineer. The battery -- the silver-colored disc -- is being used to power an LED.

Abstract:
For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery.

New virus-built battery could power cars, electronic devices

Cambridge, MA | Posted on April 2nd, 2009

The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team.

The new batteries, described in the April 2 online edition of Science, could be manufactured with a cheap and environmentally benign process: The synthesis takes place at and below room temperature and requires no harmful organic solvents, and the materials that go into the battery are non-toxic.

In a traditional lithium-ion battery, lithium ions flow between a negatively charged anode, usually graphite, and the positively charged cathode, usually cobalt oxide or lithium iron phosphate. Three years ago, an MIT team led by Belcher reported that it had engineered viruses that could build an anode by coating themselves with cobalt oxide and gold and self-assembling to form a nanowire.

In the latest work, the team focused on building a highly powerful cathode to pair up with the anode, said Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. Cathodes are more difficult to build than anodes because they must be highly conducting to be a fast electrode, however, most candidate materials for cathodes are highly insulating (non-conductive).

To achieve that, the researchers, including MIT Professor Gerbrand Ceder of materials science and Associate Professor Michael Strano of chemical engineering, genetically engineered viruses that first coat themselves with iron phosphate, then grab hold of carbon nanotubes to create a network of highly conductive material.

Because the viruses recognize and bind specifically to certain materials (carbon nanotubes in this case), each iron phosphate nanowire can be electrically "wired" to conducting carbon nanotube networks. Electrons can travel along the carbon nanotube networks, percolating throughout the electrodes to the iron phosphate and transferring energy in a very short time.

The viruses are a common bacteriophage, which infect bacteria but are harmless to humans.

The team found that incorporating carbon nanotubes increases the cathode's conductivity without adding too much weight to the battery. In lab tests, batteries with the new cathode material could be charged and discharged at least 100 times without losing any capacitance. That is fewer charge cycles than currently available lithium-ion batteries, but "we expect them to be able to go much longer," Belcher said.

The prototype is packaged as a typical coin cell battery, but the technology allows for the assembly of very lightweight, flexible and conformable batteries that can take the shape of their container.

Last week, MIT President Susan Hockfield took the prototype battery to a press briefing at the White House where she and U.S. President Barack Obama spoke about the need for federal funding to advance new clean-energy technologies.

Now that the researchers have demonstrated they can wire virus batteries at the nanoscale, they intend to pursue even better batteries using materials with higher voltage and capacitance, such as manganese phosphate and nickel phosphate, said Belcher. Once that next generation is ready, the technology could go into commercial production, she said.

Lead authors of the Science paper are Yun Jung Lee and Hyunjung Yi, graduate students in materials science and engineering. Other authors are Woo-Jae Kim, postdoctoral fellow in chemical engineering; Kisuk Kang, recent MIT PhD recipient in materials science and engineering; and Dong Soo Yun, research engineer in materials science and engineering.

The research was funded by the Army Research Office Institute of the Institute of Collaborative Technologies, and the National Science Foundation through the Materials Research Science and Engineering Centers program.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
News office
Room 11-400
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project