Home > Press > New student team aims to create biomachines that destroy pollutants, cancer cells
![]() |
Abstract:
Microscopic, living machines that sense toxins in the air or deliver drugs in the body -- the stuff of science fiction? A new Cornell student project team is working to make such things the stuff of reality.
The Cornell International Genetically Engineered Machines (iGEM) team, formed this year, uses biological, not mechanical, components to make machines. Their goal is to enter the annual competition at the Massachusetts Institute of Technology (MIT) that convenes institutions from all over the world to design, create and demonstrate such machines.
This field is called synthetic biology, a discipline so new that many large research institutions don't offer specific programs to study it.
Reminiscent of when "nanotechnology" was barely a household term, synthetic biology is the design and engineering of complex biological systems that don't occur naturally, using DNA or other biological materials as "biobricks." Synthetic biologists bioengineer microorganisms that can perform such tasks as producing pharmaceuticals, detecting toxins, breaking down pollutants or repairing defective genes.
"A lot of students were looking for a project team in the bio-related disciplines, which didn't exist at Cornell," said Naweed Paya '09, who co-founded the team this past fall with Koonal Bharadwaj '09. Majors represented on the team include not only biological engineering and biology, but also chemical engineering, electrical engineering and materials science.
The team of nine students is brainstorming ideas for their entry into MIT's sixth iGEM competition, to be held in November. They plan to have their project implemented and ready for experimentation by the summer, they said. The team attended the November 2008 competition, which featured more than 80 teams, to observe the other schools and collect ideas.
Among other possibilities, the students are looking into using cells called magnetotactic bacteria for heavy-metal decontamination of water. Toxic metals would be attracted to the bacteria, and the bacteria would then be removed with a magnet.
Other ideas include using bacteria as an anti-tumor agent or to insert antioxidants found in berries or spinach into such food-producing cells as yeast or bacterial cells that produce cheese.
The students, whose faculty advisers are Carl Batt, the Liberty Hyde Bailey Professor of Food Science, and Maki Inada, senior research associate in molecular biology and genetics, are researching whether any of their ideas have been tried before. They spend Sunday afternoons presenting their findings to each other.
Meanwhile, the search is on for team funding. While they've received a small grant from the College of Engineering, the students are looking for alumni, companies or other donors who can support them longer term.
"It's kind of like we're reinventing the wheel," said Alyssa Henning '11, who added that what drew her to iGEM was the opportunity to explore uncharted territory. "What we are doing in any of these projects really hasn't been done before."
####
For more information, please click here
Contacts:
Anne Ju
Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Environment
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |