Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Princeton researchers discover new type of laser

Quantum cascade lasers are small and efficient sources of mid-infrared laser beams, which are leading to new devices for medical diagnostics and environmental sensing.

Credit: Frank Wojciechowski
Quantum cascade lasers are small and efficient sources of mid-infrared laser beams, which are leading to new devices for medical diagnostics and environmental sensing.

Credit: Frank Wojciechowski

Abstract:
A Princeton-led team of researchers has discovered an entirely new mechanism for making common electronic materials emit laser beams. The finding could lead to lasers that operate more efficiently and at higher temperatures than existing devices, and find applications in environmental monitoring and medical diagnostics.

Princeton researchers discover new type of laser

Princeton, NJ | Posted on December 22nd, 2008

"This discovery provides a new insight into the physics of lasers," said Claire Gmachl, who led the study. Gmachl, an electrical engineer, is the director of the Mid-Infrared Technologies for Health and the Environment (MIRTHE) center. The phenomenon was discovered in a type of device called quantum cascade laser, in which an electric current flowing through a specially designed material produces a laser beam. Gmachl's group discovered that a quantum cascade laser they had built generated a second beam with very unusual properties, including the need for less electrical power than the conventional beam. "If we can turn off the conventional beam, we will end up with a better laser, which makes more efficient use of electrical power," said Gmachl.

The team that conducted the study includes Gmachl's graduate student Kale Franz, who built the laser that revealed the new phenomenon, and Stefan Menzel, a graduate student from the University of Sheffield, UK, who unearthed the unique properties of the phenomenon during an internship at Princeton University last summer. The study was published online in Nature Photonics on Dec. 14.

The light emitted by a laser differs fundamentally from light produced by common sources such as the sun, fire, or electric lamps. According to the field of physics called quantum electrodynamics, light is made up of particles called photons. Common sources of light emit photons that are in a random order, like crowds milling about a busy marketplace. In contrast, photons in a laser are "in sync" with each other, like a music band marching in formation. This property, called coherence, allows laser light to shine in an intense, narrow beam of a single, very pure color.

One way to produce a laser beam is to pass an electric current through a semiconductor such as gallium arsenide. The electric current pumps energy into the material, forcing a large number of its electrons to a higher energy level than normal. Under certain conditions, these electrons drop to a lower level of energy, and emit the extra energy in the form of synchronized photons of light. This is the mechanism underlying lasers used in CD writers, laser pointers and other common electronic devices.

The laser used in the Princeton study is a special type called a quantum cascade laser. Built at Princeton University's nanofabrication facility, the device is about one-tenth as thick as a human hair and 3 millimeters long. Despite its tiny size, it is made of hundreds of layers of different semiconductor materials. Each layer is only a few atoms thick. In this device, electrons "cascade" down through the layers as they lose energy and give off synchronized photons.

In an earlier study published in Applied Physics Letters in June 2007, Franz, Gmachl and others had reported that a quantum cascade laser they had built unexpectedly emitted a second laser beam of slightly smaller wavelength than the main one. Further studies by Menzel and others revealed that the second beam could not be explained by any existing theory of quantum cascade lasers. Unlike a conventional semiconductor laser, the second beam grew stronger as the temperature increased, up to a point. Further, it seemed to compete with the "normal" laser, growing weaker as the latter strengthened when more electric current was supplied. "It's a new mechanism of light emission from semiconductor lasers," said Franz.

To explain this mechanism, the researchers invoked a quantum property of electrons called momentum. In the conventional view of quantum cascade lasers, only electrons of nearly zero momentum participate in "lasing" (producing laser light). Further, a substantial number of electrons has to attain the same level of energy and momentum - be in a so-called "quasi-equilibrium" condition -- before they can participate in laser action. In contrast, studies by Gmachl's group showed that the second laser beam originated from electrons of lower energy, but higher momentum that were not in equilibrium. "It showed, contrary to what was believed, that electrons are useful for laser emission even when they are in highly non-equilibrium states," said Franz.

The new laser phenomenon has some interesting features. For instance, in a conventional laser relying on low momentum electrons, electrons often reabsorb the emitted photons, and this reduces overall efficiency. In the new type of laser, however, this absorption is reduced by 90%, said Franz. This could potentially allow the device to run at lower currents, and also makes it less vulnerable to temperature changes. "It should let us dramatically improve laser performance," he said.

The device used in the study does not fully attain this level of performance, because the conventional, low-efficiency laser mechanism dominates. To take full advantage of the new discovery, therefore, the conventional mechanism would need to be turned off. The researchers have started to work on methods to achieve this outcome, said Franz.

Unlike other lasers, quantum cascade lasers operate in the mid- and far-infrared range, and can be used to detect even minute traces of water vapor, ammonia, nitrogen oxides, and other gases that absorb infrared light. As a result, these devices are finding applications in air quality monitoring, medical diagnostics, homeland security, and other areas that require extremely sensitive detection of different chemicals. The new discovery should help make these devices smaller, more efficient, and more sensitive, said Gmachl.

The research was partly sponsored by the MIRTHE center, which is funded by the National Science Foundation and directed by Gmachl. MIRTHE is a multi-institutional research collaboration for developing compact sensors to detect trace amounts of gases in the atmosphere and in human breath. Partial support was also provided by the European Union's Marie Curie Research Training Network and its Physics of Intersubband Semiconductor Emitters (POISE) program, which sponsored Stefan Menzel's visit to Princeton University. Kale Franz was supported by the NSF Graduate Fellowship Program.

####

For more information, please click here

Contacts:
Steven Schultz

609-258-3617

Copyright © Princeton University, Engineering School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Photonics/Optics/Lasers

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project