Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Intel, Micron Move into Mass Production with 34nm NAND Flash

Abstract:
Intel Corporation and Micron Technology Inc. (NYSE:MU) today announced mass production of their jointly developed 34nm, 32 gigabit multi-level cell (MLC) NAND flash memory device. Developed and manufactured by the companies' NAND flash joint venture, IM Flash Technologies (IMFT), the process technology is the most advanced process available on the market and enables the industry's only monolithic 32 Gb NAND chip that fits into a standard 48-lead thin small-outline package (TSOP). The companies are ahead of schedule with 34nm NAND production, expecting their Lehi facility to have transitioned more than 50 percent of its capacity to 34nm by year's end.

Intel, Micron Move into Mass Production with 34nm NAND Flash

SANTA CLARA, CA and BOISE, ID | Posted on November 24th, 2008

"We have made great strides in NAND process capability and are now in a leadership role with 34nm production," said Brian Shirley, vice president of Micron's Memory Group. "The tiny 34nm, 32 Gb chip enables our customers to easily increase their NAND storage capacity for a number of consumer and computing products."

"The results from IMFT continue to exceed our expectations," said Randy Wilhelm, vice president and general manager, Intel NAND Solutions Group. "With such clear leadership in NAND manufacturing, we are able to offer our customers NAND solutions with great value, performance and low power."

The 34nm, 32 Gb chips are manufactured on 300 mm wafers. Measuring just 172mm², less than the size of a thumbnail, the 34nm, 32 Gb chip will cost-effectively enable high-density solid-state storage in small form factor applications including digital cameras, personal music players and digital camcorders. Additionally, the chip will enable more cost-effective solid-state drives, dramatically increasing their current storage capacity.

The companies also plan to begin sampling lower density multi-level cell (MLC) and single-level cell (SLC) products using the 34nm process technology in early 2009.

About Intel

Intel (NASDAQ: INTC), the world leader in silicon innovation, develops technologies, products and initiatives to continually advance how people work and live. Additional information about Intel is available at www.intel.com/pressroom and blogs.intel.com. For more details on Intel NAND flash solutions go to www.intel.com/go/ssd.

####

About Micron Technology Inc.
Micron Technology, Inc., is one of the world's leading providers of advanced semiconductor solutions. Through its worldwide operations, Micron manufactures and markets DRAMs, NAND flash memory, CMOS image sensors, other semiconductor components, and memory modules for use in leading-edge computing, consumer, networking, and mobile products. Micron’s common stock is traded on the New York Stock Exchange (NYSE) under the MU symbol.

©2008 Micron Technology, Inc. and Intel Corporation. All rights reserved. Information is subject to change without notice.

Micron and the Micron logo are trademarks of Micron Technology, Inc.

Intel is a trademark of Intel Corporation in the United States and other countries. All other trademarks are the property of their respective owners.

This press release contains forward-looking statements regarding the production of the 34nm 32 Gb NAND device and the sampling of lower density MLC and single-level cell products using the 34nm process technology. Actual events or results may differ materially from those contained in the forward-looking statements. Please refer to the documents Micron files on a consolidated basis from time to time with the Securities and Exchange Commission, specifically Micron's most recent Form 10-K and Form 10-Q. These documents contain and identify important factors that could cause the actual results for Micron on a consolidated basis to differ materially from those contained in our forward-looking statements (see Certain Factors). Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

For more information, please click here

Contacts:
Micron Technology, Inc.
Kirstin Bordner
208-368-5487

or
Intel Corporation
Connie Brown
503-791-2367

or
For Intel Corporation
Deborah Paquin
916-984-1921

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project