Home > News > Smart Cleantech Catalysts
November 6th, 2008
Smart Cleantech Catalysts
Abstract:
The problem for scientists and engineers has been that in order to tune a catalyst to do what is desired, you need to know how it adapts during a reaction. Trouble is, watching catalysts in action has escaped the reach of scientists until now.
With the aid of powerful spectroscopy technology, U.S. Department of Energy Lawrence Berkeley National Laboratory scientists observed catalysts restructuring themselves in response to various gases swirling around them.
The spectroscopy helps provide a window into these reactions for tuning catalysts. These insights are expected to help improve pollution control as well as fuel cell technologies. Smarter catalysts hold promise for removing toxins from water and helping feed hydrogen fuel cells.
Scientists used an advanced spectroscopy system at Berkeley Lab's Advanced Light Source to study nanoparticles composed of two catalytic metals.
In the lab, Gabor Somorjai, a researcher who holds joint appointments with the Berkeley Lab's Materials Sciences Division and UC Berkeley's department of chemistry, teamed up with spectroscopy expert Miquel Salmeron of Berkeley Lab's Materials Sciences Division and UC Berkeley's department of materials sciences and engineering.
Source:
ecoworld.com
| Related News Press |
Chemistry
Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Blog sites
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016
Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016
Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||