Home > Press > Two UD profs awarded Air Force Young Investigator grants
Abstract:
Thomas H. Epps III, University of Delaware assistant professor of chemical engineering, and Erik Thostenson, assistant professor of mechanical engineering, are among just 39 scientists and engineers throughout the country selected to receive three-year research grants from the U.S. Air Force Office of Scientific Research (AFOSR) Young Investigator Research Program. The 39 awards total $12.1 million.
The Young Investigator Research Program, or YIP, is open to scientists and engineers at research institutions across the U.S. who have earned a doctorate within the past five years and show "exceptional ability and promise for conducting basic research."
YIP is aimed at fostering creative basic research in science and engineering and enhancing early career development of outstanding young investigators. Areas of interest include aerospace, chemical and material sciences; physics and electronics; and mathematics, information and life sciences.
The University of Delaware was one of just six universities to receive two of the awards. Other winners represent such well-recognized institutions as Johns Hopkins, MIT, UCLA, Brown, Princeton, Notre Dame, Virginia Tech, Michigan State, the University of Wisconsin and the University of Illinois.
Epps's research will focus on materials design and fabrication to create conducting membranes for current and next-generation energy generation and storage devices, such as batteries, fuel cells and solar cells. The work will produce new nano-structured soft-material networks for ion-conducting membranes, where these self-assembling networks will overcome many of the limitations found in current membranes, including poor mechanical integrity, poor temperature stability, non-uniform pore sizes and poor chemical compatibility.
Thostenson will study novel micro- and nano-structured composites for sensing and actuation.
"The emergence of nanotechnology has enabled new material systems where structural and functional properties can be tailored," Thostenson said, noting that he plans to develop novel composite sensors and actuators with enhanced functional properties by tailoring the actuator structure at the micro and nano scales.
"This is great news for these two young faculty members," Michael Chajes, dean of the College of Engineering, said, "and it's a testament to their potential that they have joined the ranks of young faculty at a number of very prestigious schools in winning these grants."
Article by Diane Kukich
Photos by Kathy Atkinson
####
For more information, please click here
Contacts:
Office of Communications & Marketing
The Academy Building
105 East Main Street
University of Delaware
Newark, DE 19716 • USA
Phone: (302) 831-2792
email:
Copyright © University of Delaware
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||