Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanojewels made easy: Coaxing colors from nanoscale particles broadens horizons for optical technologies

Abstract:
Butterfly wings, peacock feathers, opals and pearls are some of nature's jewels that use nanostructures to dazzle us with color. It's accomplished through the way light reaches our eyes after passing through the submicroscopic mazes within these materials.

The seemingly effortless way that nature creates this effect is now rivaled by a rapid and simple method developed through a collaboration of researchers from North Carolina State University (NCSU), Arizona State University (ASU) and the Universidad Complutense de Madrid (UCM).

Nanojewels made easy: Coaxing colors from nanoscale particles broadens horizons for optical technologies

Tempe, AZ | Posted on July 30th, 2008

Professor Orlin Velev and graduate student researcher Vinayak Rastogi in the Department of Chemical Engineering at NCSU have shown how colloid chemistry methods originally used to form particle aggregates from nanoparticles can be used to quickly make particles with dazzling colors simply by letting a suspension of nanoparticles dry on a superhydrophobic surface.

Superhydrophobicity is a property of a material that repels water like ducks' feathers or lotus leaves. It has been used commercially in textiles, coatings and building materials.

The basic idea behind the process is akin to stacking round fruits or vegetables in a supermarket produce bin in high, neat rows to keep the produce from falling to the floor as customers pick them out. Doing this with nanoscale particles of different sizes leads to opalescence, since some colors of light are reflected differently depending on the size of the holes between the nanoparticles and the angle from which they are viewed.

Normally, carefully arranging the nanoparticles in neat rows requires a complex series of steps with oily solvents and water mixtures requiring extensive washing afterwards to remove the solvents.

Now, with the help of researchers at ASU, this process has been made as simple as placing a drop on a superhydrophobic surface and letting it dry for one to two hours.

The researchers call these one- to two-millimeter particles "nanojewels."

Velev and Rastogi of NCSU developed the method with help of several colleagues, including: Manuel Marquez, an adjunct professor in the Harrington Department of Bioengineering in ASU's Ira A. School of Engineering, and Antonio Garcia, a professor in the bioengineering department and director of the Laboratory for Personalized Molecule Measurement; and professors Sonia Melle and Oscar Calderon in the School of Optics at UCM.

Rastogi's presentation at the 82nd American Chemical Society Colloid & Surface Science Symposium on June 18, 2008 titled "Synthesis of Light-Diffracting Colloidal Crystal Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface" and a paper just published in the journal Advanced Materials (published Online: July 28, 2008), authored by these researchers, describes how for the first time superhydrophobic surfaces are shown to play an important role in making new materials.

In the paper, they describe how different nanoparticles of various sizes can produce "nanojewels" of various colors that display different optical properties.

"These nanojewels can potentially find application in photonics, drug delivery, special coatings, sensors and microfluidics," Velev explains.

Indeed, many researchers around the world are working on ways to make similar two-dimensional and three-dimensional photonic crystals to fabricate light-emitting diodes, optical fibers for communications, submicroscopic lasers, ultrawhite pigments, antennas and reflectors, and optical integrated circuits.

The biggest stumbling blocks in making these materials is finding ways of making photonic crystals with uniform properties in very large quantities and in minimizing imperfections in structure that reduce the quality of the final product.

This new process is certainly easy to replicate to make large quantities, and superhydrophobic surfaces lead to structures that naturally form ordered structures.

Superhydrophobic surfaces allow nanojewels to be created from a single drop of water containing nanoparticles, because of several effects.

First, the drop stays in the shape of a ball because water does not spread on it while the nanoparticles are held in the drop due to the surface tension of water.

Compared to drying the drop in air, which is a fast evaporation process that causes the water in the drop to distort and flow, the drop gently dries on the superhydrophobic surface. This lets the nanoparticles get as close to each other as possible, swirling in a slow circular motion until all of the water evaporates.

When nanoparticles of two different sizes are used in the same drop, the smaller ones move to the surface of the drop while the bigger ones stay in the middle. This is because the smaller ones have more Brownian motion and are elevated to the surface with the water molecules that are subsequently evaporating at the surface, leaving all of the nanoparticles behind to form the nanojewels.

"Besides the dazzling look of these nanojewels, the most exciting thing about this work is that it opens up many interesting possibilities in quickly and inexpensively making new materials with nanoparticles", Marquez says.

"By understanding how different particle sizes determine the colors produced, these nanojewels can be designed for applications in optical communication systems," Melle adds.

As more nanoparticles and nanostructures come into the marketplace, technologies that can quickly assemble the structures so that their unique size and properties can be employed in new devices will be important to the growth of nanotechnology and related industries.

Referenced Article

"Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles in Droplets on a Superhydrophobic Surface", Vinayak Rastogi, Osca G. Calderon, Antonio A. Garcia, Manuel Marquez, and Orlin Velev, Advanced Materials, (Early View) Published Online 28 Jul 2008 (DOI 10.1002/adma.200703008).

####

For more information, please click here

Contacts:
Joe Kullman

480-965-8122

SOURCE:
Antonio Garcia,
Professor, Harrington Department of Bioengineering
Arizona State University
(480) 965-8798

MEDIA CONTACT:
Ira A. Fulton School of Engineering
Arizona State University
Tempe, Arizona USA
www.fulton.asu.edu/fulton/

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project