Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles + Light = Dead Tumor Cells

Abstract:
Medical physicists at the University of Virginia have created a novel way to kill tumor cells using nanoparticles and light. The technique, devised by Wensha Yang, an instructor in radiation oncology at the University of Virginia, and colleagues Ke Sheng, Paul W. Read, James M. Larner, and Brian P. Helmke, employs quantum dots.

Nanoparticles + Light = Dead Tumor Cells

College Park, MD | Posted on July 29th, 2008

Medical physicists at the University of Virginia have created a novel way to kill tumor cells using nanoparticles and light. The technique, devised by Wensha Yang, an instructor in radiation oncology at the University of Virginia, and colleagues Ke Sheng, Paul W. Read, James M. Larner, and Brian P. Helmke, employs quantum dots. Quantum dots are semiconductor nanostructures, 25 billionths of a meter in diameter, which can confine electrons in three dimensions and emit light when exposed to ultraviolet radiation.

Yang and his colleagues realized that quantum dots also give off light when exposed to megavoltage x-rays, such as those used in cancer radiotherapy. That property, the scientists realized, makes quantum dots an ideal mediator in therapies employing light-activated compounds to treat cancer.

A compound called Photofrin is the only photosensitizer currently approved by the FDA. Photofrin is absorbed by cancer cells and, upon exposure to light, becomes active and kills cells. It is currently used to treat certain kinds of shallowly located tumors, but Yang and his colleagues realized that combing Photofrin with quantum dots could create an efficient method to kill even deeply seated cancer cells. Upon exposure to high doses of radiation, the dots become luminescent and emit light; that light triggers the cancer-killing activity of the Photofrin. In theory, the process, which so far has been studied only in cancer cells grown in culture, could work on tumors located too deep within the body to be reached by an external light source.

To prevent normal tissues from being affected by the treatment, the toxicity of the quantum dot-Photofrin conjugate is only activated when radiation is applied. Also, the area to be treated is targeted with conformal radiation, which is delivered with high precision within the three-dimensional contours of the tumor, with minimal spillover to surrounding healthy tissues. As a result, Yang says, "the toxicity of the drug is substantially lower in the lower radiation dose area" outside the boundaries of the tumor. In tests on human lung carcinoma cells, the process resulted in a 2-6 times lower tumor cell survival compared to radiation alone, but with minimal toxicity to nearby cells.

Yang will describe the technique in his talk, "Enhanced Energy Transfer From Mega-Voltage Radiation to the Tumor Cell Killing Singlet Oxygen by Semiconductive Nanoparticles," on Tuesday, July 29, during the 50th annual meeting of the American Association of Physicists in Medicine (AAPM), the largest medical physics association in the world. The meeting takes place from July 27 to July 31, in Houston, Texas.

RELATED LINKS
- AAPM home page: www.aapm.org
- Abstracts and search form www.aapm.org/meetings/08AM/MeetingProgram.asp
- Press Guide www.aapm.org/meetings/08AM/VirtualPressRoom/
- Background article about how medical physics has revolutionized medicine:
www.newswise.com/articles/view/538208/

HOW TO COVER THE MEETING
Reporters who would like to attend the meeting in person should fill out the press registration form on the AAPM Virtual Press Room. See:
www.aapm.org/meetings/08AM/VirtualPressRoom/documents/pressregform.pdf.

Reporters who would like to cover the conference remotely will find releases and articles on the Virtual Press Room highlighting many of the interesting and important talks presented at the meeting. Even if you can't make it to Houston, the Virtual Press Room will make it possible to write stories about the meeting from your desk.

####

About American Institute of Physics
The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional nonprofit organization whose mission is to advance the application of physics to the diagnosis and treatment of human disease. The association encourages innovative research and development, helps disseminate scientific and technical information, fosters the education and professional development of medical physicists, and promotes the highest quality medical services for patients. In 2008, AAPM will celebrate its 50th year of serving patients, physicians, and physicists.

For more information, please click here

Contacts:
Jason Socrates Bardi
American Institute of Physics,
301-209-3091 (office)
858-775-4080 (cell)


Jeff Limmer
AAPM Media Relations Subcommittee Chair

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project