Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A Protein’s Path to the “Chamber of Doom”

Abstract:
Researchers have uncovered a perilous pathway within the cell that rivals any road taken by Indiana Jones or his summer blockbuster companions: a slippery tube that funnels proteins into a "chamber of doom" where they are shredded and recycled into the building blocks of new proteins. The newly described pathway could have applications for Alzheimer's, Parkinson's and some cancers.

A Protein’s Path to the “Chamber of Doom”

New York, NY | Posted on July 14th, 2008

Researchers have uncovered a perilous pathway within the cell that rivals any road taken by Indiana Jones or his summer blockbuster companions: a slippery tube that funnels proteins into a "chamber of doom" where they are shredded and recycled into the building blocks of new proteins.

The tube is part of the 26S proteasome, an enzyme that acts as the cell's protein garbage disposal. As described by researchers from the Technion-Israel Institute of Technology and the University of Texas Health Science Center at San Antonio, the tube is a concentric stack of rings wrapped in molecular motors that speed the proteins toward the proteasome's slicing and dicing core.

"The life of all proteins in our cells ends within the proteasome chamber of doom," Technion author Michael Glickman explained. He suggested that the newly-described pathway "should be of interest in applications for diseases in which cells are unable to process degraded or misfolded proteins," including Alzheimer's and Parkinson's disease, some cancers, and age-related conditions such as cataract disease.

The study, published online in June in the journal Nature Structural and Molecular Biology, will help researchers understand the basic biology of the proteasome and "its intrinsic essential function in a myriad of cellular pathways," said Allen Taylor, who has studied proteasome function extensively as director of the Laboratory for Nutrition and Vision Research at Tufts University.

The 26S proteasome degrades proteins that are marked for destruction with a ubiquitin protein "tag." The proteasome itself consists of two major structures: a large core structure where the proteins are degraded, and a smaller structure that serves as a kind of entryway where the tagged protein makes its first contact with the proteasome and is unfolded for its journey into the core. The tube described by Glickman and colleagues is part of the smaller structure, and serves a chute between the first contact site and the core.

The researchers used atomic force microscopy to visualize the extremely tiny tube, which Glickman described as two molecular "donuts" stacked on top of each other. The donut holes through which proteins pass is only two nanometers in diameter. (For comparison, the period at the end of this sentence is one million times wider than a nanometer.)

The tube is ringed by a group of energy-producing enzymes called ATPases, which act a motor to drive proteins through the tube. "One may see the entire machine as an external engine wrapping around an inner molecular stent for protein translocation, all situated atop the molecular shredder into which the proteins are fed," Glickman explained.

It's a natural design that engineers working on synthetic nanomachines might hope to copy in their own creations, he noted.

####

About American Technion Scoiety
The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

For more information, please click here

Contacts:
Kevin Hattori
American Technion Scoiety

212.407.6319

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Nanomedicine

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project